题目:
题解:
- 求出个数为 k 的所有组合
- 筛选和为 n 的组合
public class CombinationSum3 {
public int sum = 0;
public LinkedList<Integer> pathList = new LinkedList<>();
public List<List<Integer>> resultList = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
dfsForCombinationSum3(k, n, 1);
return resultList;
}
private void dfsForCombinationSum3(int k, int n, int start) {
if (pathList.size() == k && sum == n) {
resultList.add(new ArrayList<>(pathList));
return;
}
// 剪枝1:上限最大值
int maxIndex = Math.min(n - sum, 9);
int needNumber = k - pathList.size();
for (int i = start; i <= maxIndex; i++) {
// 剪枝2:元素个数
if (maxIndex - i + 1 < needNumber) {
continue;
}
sum += i;
pathList.add(i);
dfsForCombinationSum3(k, n, i+1);
sum -= i;
pathList.removeLast();
}
}
}
剪枝:
- 当前组合的和为 sum,总和为 n,带选择组合和应该为 (n-sum),所以 for 遍历上限应该小于等于 (n-sum),因为题目要求从 [1,9] 选择数字,所以 for 遍历上限应该为:Math.min((n-sum), 9)。
- k 是元素总数,path.size() 是已选择元素总数,(k-path.size()) 为待选择的元素总数,(maxIndex-i+1) 为未选择的元素总数,如果 (maxIndex-i+1) < (k-path.size()) 表示剩下的元素数量小于需要元素数量,即使将剩下元素全部选上,总数也不足 k,所以不再进行后续遍历。