1.题目如下:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入:n = 3 输出:3 解释:有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
提示:
1 <= n <= 45
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2.代码如下:
class Solution {
public:
//还是一个简单的动态规划,可以发现:
//把最后一步分成2种:1和2步:
//那么:n-1 加上n-2的步数等于n的步数,这就是最优子结构
int climbStairs(int n) {
int res[n+2];
res[1]=1;
res[2]=2;
for(int i=3;i<=n;i++){
res[i]=res[i-1]+res[i-2];
}
return res[n];
}
//使用递归会超时,所以还是不不能用
/*
int climbStairs(int n,int nums) {
if(n==1){
return 1;
}
if(n==2){
return 2;
}
else{
return climbStairs(n-1)+climbStairs(n-2);
}
*/
};