目录
一、效果呈现
排行-播放数关系图
排行-收藏数关系图
排行-硬币数关系图
二、讲解
1. 读取数据
使用Pandas库中的read_csv
函数来读取CSV文件:
(这里的CSV文件获取方法可以查看我上一篇文章)
import pandas as pd
data = pd.read_csv('B站TOP100.csv')
2. 设置绘图风格
为了避免在图表中出现中文字符无法正常显示的问题,我们需要设置Matplotlib的字体和避免负号显示问题:
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei']
mpl.rcParams['axes.unicode_minus'] = False
3. 绘制排行与硬币数关系图
我们首先来分析视频的排行与硬币数之间的关系:
# 绘制排行-硬币数关系图
plt.figure()
plt.plot(data['排行'], data['硬币数'])
plt.xlabel('排行')
plt.ylabel('硬币数')
plt.savefig('排行-硬币数.png', dpi=400)
在这段代码中,我们使用plt.figure()
创建了一个新的绘图窗口,并通过plt.plot()
函数绘制了排行与硬币数的关系图。plt.xlabel()
和plt.ylabel()
用于设置坐标轴的标签。最后,使用plt.savefig()
将图表保存为PNG格式的图片,dpi=400
确保了图片的高分辨率。(这里的dpi大小可以根据你的需求修改)
4. 绘制排行与播放数关系图
接下来,我们分析排行与播放数之间的关系:
# 绘制排行-播放数关系图
plt.figure()
plt.plot(data['排行'], data['播放数'])
plt.xlabel('排行')
plt.ylabel('播放数')
plt.savefig('排行-播放数.png', dpi=400)
5. 绘制排行与收藏数关系图
最后,我们来分析排行与收藏数之间的关系:
# 绘制排行-收藏数关系图
plt.figure()
plt.plot(data['排行'], data['收藏数'])
plt.xlabel('排行')
plt.ylabel('收藏数')
plt.savefig('排行-收藏数.png', dpi=400)
三、完整代码
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
data = pd.read_csv('B站TOP100.csv')
mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei']
mpl.rcParams['axes.unicode_minus'] = False
# 绘制排行-硬币数关系图
plt.figure()
plt.plot(data['排行'], data['硬币数'])
plt.xlabel('排行')
plt.ylabel('硬币数')
plt.savefig('排行-硬币数.png', dpi=400)
# 绘制排行-播放数关系图
plt.figure()
plt.plot(data['排行'], data['播放数'])
plt.xlabel('排行')
plt.ylabel('播放数')
plt.savefig('排行-播放数.png', dpi=400)
# 绘制排行-收藏数关系图
plt.figure()
plt.plot(data['排行'], data['收藏数'])
plt.xlabel('排行')
plt.ylabel('收藏数')
plt.savefig('排行-收藏数.png', dpi=400)
print('所有关系图都已保存完成。')