【题解】【模拟】—— [CSP-J2019]数字游戏

P5660 [CSP-J2019] 数字游戏
前置知识:字符串、数组、计数排序。

[CSP-J2019] 数字游戏

题目描述

小 K 同学向小 P 同学发送了一个长度为 8 8 801 字符串来玩数字游戏,小 P 同学想要知道字符串中究竟有多少个 1 1 1

注意:01 字符串为每一个字符是 0 0 0 或者 1 1 1 的字符串,如 101 为一个长度为 3 3 3 的 01 字符串。

输入格式

输入文件只有一行,一个长度为 8 8 8 的 01 字符串 s s s

输出格式

输出文件只有一行,包含一个整数,即 01 字符串中字符 1 \mathbf 1 1 的个数。

输入 #1

00010100

输出 #1

2

输入 #2

11111111

输出 #2

8

提示

样例 1 说明

该 01 字符串中有 2 2 2 个字符 1 1 1

样例 2 说明

该 01 字符串中有 8 8 8 个字符 1 1 1

数据规模与约定

  • 对于 20 % 20\% 20% 的数据,保证输入的字符全部为 0 0 0
  • 对于 100 % 100\% 100% 的数据,输入只可能包含字符 0 0 0 和字符 1 1 1,字符串长度固定为 8 8 8

解法1:打表

1.1.程序打表

#include<bits/stdc++.h>
using namespace std;
int a[11111112];
int main()
{
   
	int n;
	scanf("%d",&n);
	for(int i=0;i<=1;i++)
		for(int j=0;j<=1;j++)
			for(int k=0;k<=1;k++)
				for(int l=0;l<=1;l++)
					for(int m=0;m<=1;m++)
						for(int n=0;n<=1;n++)
							for(int o=0;o<=1;o++)
								for(int p=0;p<=1;p++)
									a[i*10000000+j*1000000+k*100000+l*10000+m*1000+n*100+o*10+p]=i+j+k+l+m+n+o+p;
	printf("%d\n",a[n]);
	return 0;
}

1.2.纯打表

#include<bits/stdc++.h>
using namespace std;
int a[11111112];
int main()
{
   
	int n;
	scanf("%d",&n);
	a[0]=0;
	a[1]=1;
	a[10]=1;
	a[11]=2;
	a[100]=1;
	a[101]=2;
	a[110]=2;
	a[111]=3;
	a[1000]=1;
	a[1001]=2;
	a[1010]
对不起,由于我是一个文本交互的模型,我无法提供图像内容或直接链接到具体的题解或解决方案。但是,我可以帮你理解CSP-J2019公交换乘问题的基本概念和解决策略,这通常涉及到数据结构、图论以及算法设计。 CSP-J2019中的公交换乘问题可能是一个典型的旅行商问题(Traveling Salesman Problem, TSP)变种,或者是寻找最优路径的问题,其中涉及到公交网络中不同站点之间的最短路径或最少换乘次数。解决此类问题通常需要使用动态规划、贪心算法或者一些启发式搜索算法,比如A*搜索或Dijkstra算法。 如果你需要了解题目的基本思路,可能会这样操作: 1. 建立一个图,节点代表公交站点,边代表两个站点之间的路线及其长度或换乘次数。 2. 对于每个节点,计算从起点到所有其他节点的最短路径,形成一个邻接矩阵或邻接表。 3. 使用动态规划方法,例如记忆化搜索,尝试所有可能的路径,每次选择当前未访问节点中距离最近的一个,直到遍历完所有节点并回到起点,记录下总的距离或换乘次数。 4. 为了优化,可以考虑使用启发式搜索策略,如用估算的总距离作为启发信息,优先探索看起来更优的路径。 如果你对具体解法有疑问,或者想了解某个步骤的详细操作,请告诉我,我会尽力解释。至于详细的题解,建议你查阅相关的代码库、论坛帖子或在线教程,它们通常会有文字描述和步骤示例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蓝胖子教编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值