【题解】【数学】—— [CSP-J 2022] 解密

前置知识:代数推理。
[CSP-J 2022] 解密

[CSP-J 2022] 解密

题目描述

给定一个正整数 k k k,有 k k k 次询问,每次给定三个正整数 n i , e i , d i n_i, e_i, d_i ni,ei,di,求两个正整数 p i , q i p_i, q_i pi,qi,使 n i = p i × q i n_i = p_i \times q_i ni=pi×qi e i × d i = ( p i − 1 ) ( q i − 1 ) + 1 e_i \times d_i = (p_i - 1)(q_i - 1) + 1 ei×di=(pi1)(qi1)+1

输入格式

第一行一个正整数 k k k,表示有 k k k 次询问。

接下来 k k k 行,第 i i i 行三个正整数 n i , d i , e i n_i, d_i, e_i ni,di,ei

输出格式

输出 k k k 行,每行两个正整数 p i , q i p_i, q_i pi,qi 表示答案。

为使输出统一,你应当保证 p i ≤ q i p_i \leq q_i piqi

如果无解,请输出 NO

输入输出样例

输入 #1

10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109

输出 #1

2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
6 88

提示

【样例 #2】

见附件中的 decode/decode2.indecode/decode2.ans

【样例 #3】

见附件中的 decode/decode3.indecode/decode3.ans

【样例 #4】

见附件中的 decode/decode4.indecode/decode4.ans

【数据范围】

以下记 m = n − e × d + 2 m = n - e \times d + 2 m=ne×d+2

保证对于 100 % 100\% 100% 的数据, 1 ≤ k ≤ 10 5 1 \leq k \leq {10}^5 1k105,对于任意的 1 ≤ i ≤ k 1 \leq i \leq k 1ik 1 ≤ n i ≤ 10 18 1 \leq n_i \leq {10}^{18} 1ni1018 1 ≤ e i × d i ≤ 10 18 1 \leq e_i \times d_i \leq {10}^{18} 1ei×di1018
1 ≤ m ≤ 10 9 1 \leq m \leq {10}^9 1m109

测试点编号 k ≤ k \leq k n ≤ n \leq n m ≤ m \leq m特殊性质
1 1 1 1 0 3 10^3 103 1 0 3 10^3 103 1 0 3 10^3 103保证有解
2 2 2 1 0 3 10^3 103 1 0 3 10^3 103 1 0 3 10^3 103
3 3 3 1 0 3 10^3 103 1 0 9 10^9 109 6 × 1 0 4 6\times 10^4 6×104保证有解
4 4 4 1 0 3 10^3 103 1 0 9 10^9 109 6 × 1 0 4 6\times 10^4 6×104
5 5 5 1 0 3 10^3 103 1 0 9 10^9 109 1 0 9 10^9 109保证有解
6 6 6 1 0 3 10^3 103 1 0 9 10^9 109 1 0 9 10^9 109
7 7 7 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109保证若有解则 p = q p=q p=q
8 8 8 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109保证有解
9 9 9 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109
10 10 10 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109

1.题意解析和公式推理

    看完题目,我们先将ei*di(pi - 1)(qi - 1) + 1拆解了。

e i ∗ d i = ( p i − 1 ) ( q i − 1 ) + 1 ei*di=(pi-1)(qi-1)+1 eidi=(pi1)(qi1)+1

拆括号,依次分配并合并同类项得

e i ∗ d i = p i ∗ q i − p − q + 2 ei*di=pi*qi-p-q+2 eidi=piqipq+2

等量代换得

e i ∗ d i = n − p i − q i + 2 ei*di=n-pi-qi+2 eidi=npiqi+2

将常数项移到右边,未知项移到左边得

p i + d i = n − e i ∗ d i + 2 pi+di=n-ei*di+2 pi+di=neidi+2

目前已知 { p + q = n − e ∗ d + 2 p ∗ q = n 目前已知 \begin{cases} p+q=n-e*d+2\\ p*q=n \end{cases} 目前已知{p+q=ned+2pq=n

我们发现,只需要求出 p − q p-q pq就可以使用和差问题公式求出p和q了。

我们可以利用"完全平方和"和"完全平方差"公式解决。

( a ± b ) 2 = a 2 ± 2 a b + b 2 (a \pm b)^2=a^2\pm 2ab+b^2 (a±b)2=a2±2ab+b2

我们用完全平方和减去完全平方差。

( p + q ) 2 − ( p − q ) 2 (p+q)^2-(p-q)^2 (p+q)2(pq)2

展开得

( p + q ) 2 − ( p − q ) 2 = p 2 + 2 p q + q 2 − ( p 2 − 2 p q + q 2 ) (p+q)^2-(p-q)^2=p^2+2pq+q^2-(p^2-2pq+q^2) (p+q)2(pq)2=p2+2pq+q2(p22pq+q2)

拆括号得

( p + q ) 2 − ( p − q ) 2 = p 2 + 2 p q + q 2 − p 2 + 2 p q − q 2 (p+q)^2-(p-q)^2=p^2+2pq+q^2-p^2+2pq-q^2 (p+q)2(pq)2=p2+2pq+q2p2+2pqq2

合并同类项得

( p + q ) 2 − ( p − q ) 2 = 4 p q (p+q)^2-(p-q)^2=4pq (p+q)2(pq)2=4pq

移项得

( p − q ) 2 = ( p + q ) 2 − 4 p q (p-q)^2=(p+q)^2-4pq (pq)2=(p+q)24pq

两边同时开方得

p − q = ( p + q ) 2 − 4 p q p-q=\sqrt{(p+q)^2-4pq} pq=(p+q)24pq
等量代换得

p − q = ( p + q ) 2 − 4 n p-q=\sqrt{(p+q)^2-4n} pq=(p+q)24n

就此我们得到
{ p + q = n − e ∗ d + 2 p − q = ( p + q ) 2 − 4 n \begin{cases} p+q=n-e*d+2\\ p-q=\sqrt{(p+q)^2-4n} \end{cases} {p+q=ned+2pq=(p+q)24n
接下来只需要以此计算出p和q并判断就行了。
{ m i n ( p , q ) = ( p + q ) − ( p − q ) 2 m a x ( p , q ) = ( p + q ) + ( p − q ) 2 \begin{cases} min(p,q)=\frac{(p+q)-(p-q)} {2}\\ max(p,q)=\frac{(p+q)+(p-q)} {2} \end{cases} {min(p,q)=2(p+q)(pq)max(p,q)=2(p+q)+(pq)
本人只是一枚小学生,上面的数学推导过程是我“借鉴”洛谷上一位大佬的题解写出来的。请谅解

2.代码

#include<bits/stdc++.h>
using namespace std;
int main()
{
    long long k;
    cin>>k;
    while(k--)//k组数据 
    {
    	long long n,d,e;
    	cin>>n>>d>>e;
    	long long paq=n+2-e*d;//求出p+q的值,注意不开long long会爆
    	long long psq=sqrt(paq*paq-4*n);//求出p-q的值
    	long long p=(paq+psq)/2,q=paq-p;//求出p和q
    	if(p*q==n&&(p-1)*(q-1)+1==e*d&&p&&q)//如果满足条件 
    	    cout<<min(p,q)<<" "<<max(p,q)<<endl;//输出答案 
    	else cout<<"NO"<<endl;//否则就是无解 
	}
	return 0;
}
  • 19
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值