P8814 [CSP-J 2022] 解密(民间数据)题解

题目

链接

https://www.luogu.com.cn/problem/P8814?contestId=90215

字面描述

题目描述

给定一个正整数 k k k,有 k k k 次询问,每次给定三个正整数 n i , e i , d i n_i, e_i, d_i ni,ei,di,求两个正整数 p i , q i p_i, q_i pi,qi,使 n i = p i × q i n_i = p_i \times q_i ni=pi×qi e i × d i = ( p i − 1 ) ( q i − 1 ) + 1 e_i \times d_i = (p_i - 1)(q_i - 1) + 1 ei×di=(pi1)(qi1)+1

输入格式

第一行一个正整数 k k k,表示有 k k k 次询问。

接下来 k k k 行,第 i i i 行三个正整数 n i , d i , e i n_i, d_i, e_i ni,di,ei

输出格式

输出 k k k 行,每行两个正整数 p i , q i p_i, q_i pi,qi 表示答案。

为使输出统一,你应当保证 p i ≤ q i p_i \leq q_i piqi

如果无解,请输出 NO

样例 #1

样例输入 #1
10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109
样例输出 #1
2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
6 88

提示

【样例 #2】

见附件中的 decode/decode2.indecode/decode2.ans

【样例 #3】

见附件中的 decode/decode3.indecode/decode3.ans

【样例 #4】

见附件中的 decode/decode4.indecode/decode4.ans

【数据范围】

以下记 m = n − e × d + 2 m = n - e \times d + 2 m=ne×d+2

保证对于 100 % 100\% 100% 的数据, 1 ≤ k ≤ 10 5 1 \leq k \leq {10}^5 1k105,对于任意的 1 ≤ i ≤ k 1 \leq i \leq k 1ik 1 ≤ n i ≤ 10 18 1 \leq n_i \leq {10}^{18} 1ni1018 1 ≤ e i × d i ≤ 10 18 1 \leq e_i \times d_i \leq {10}^{18} 1ei×di1018
1 ≤ m ≤ 10 9 1 \leq m \leq {10}^9 1m109

测试点编号 k ≤ k \leq k n ≤ n \leq n m ≤ m \leq m特殊性质
1 1 1 1 0 3 10^3 103 1 0 3 10^3 103 1 0 3 10^3 103保证有解
2 2 2 1 0 3 10^3 103 1 0 3 10^3 103 1 0 3 10^3 103
3 3 3 1 0 3 10^3 103 1 0 9 10^9 109 6 × 1 0 4 6\times 10^4 6×104保证有解
4 4 4 1 0 3 10^3 103 1 0 9 10^9 109 6 × 1 0 4 6\times 10^4 6×104
5 5 5 1 0 3 10^3 103 1 0 9 10^9 109 1 0 9 10^9 109保证有解
6 6 6 1 0 3 10^3 103 1 0 9 10^9 109 1 0 9 10^9 109
7 7 7 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109保证若有解则 p = q p=q p=q
8 8 8 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109保证有解
9 9 9 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109
10 10 10 1 0 5 10^5 105 1 0 18 10^{18} 1018 1 0 9 10^9 109

思路分析

数据分析

题目中的,n,e,d均已给出。求p,q
大概关系如下:
n=pq;
ed=(p-1)(q-1)+1;
=pq-p-q+2
题目中给了一个m 值的定义
m=n-ed+2; 代入n,ed;
m=pq-pq+p+q-2+2
=p+q;
若把所有已经知道的罗列起来,条件如下:
n-ed+2=p+q;
n =pq;
根据这2个关系式,是可以看出p,q取值的唯一性。

那么只要知道p的值,q的值一定确定.

方法

接下来面临的问题是如何确定p的值

枚举

  1. m的最大取值范围是1e9 枚举 时间复杂度 O(km) TLE

  2. 从n入手
    像分解因数一样 枚举范围是sqrt(n) -> 时间复杂度 O(k* sqrt(n)) 大大的TLE!

以上两种方法写对的得分都是60分;

二分

接下来是不是没有想法了
别急
最重要的思路就是二分 p ,上限 1 e 9 ; 最重要的思路就是 二分p,上限1e9; 最重要的思路就是二分p,上限1e9;
单次二分时间复杂度 O ( l o g ( m ) )   60 单次二分时间复杂度 O(log(m))~60 单次二分时间复杂度O(log(m)) 60
总体时间复杂度 O(k*log(m))~6e6

时间复杂度过的去。
接下来的问题是,此解空间是否有单调有序性。

n == pq 返回pq的值
n>pq,n<pq 应该往哪个方向二分
当p大的时候,q小
q小的时候,p大
这对标了小学时的和同近积大
∴ 这个解空间不具有单调有序性,但这个解空间具有单调对称性 , 所以 n > p q 可以往任意方向二分搜索, n < p q 往反方向二分即可。 ∴这个解空间不具有单调有序性,但这个解空间具有单调对称性,所以n>pq可以往任意方向二分搜索,n<pq往反方向二分即可。 这个解空间不具有单调有序性,但这个解空间具有单调对称性,所以n>pq可以往任意方向二分搜索,n<pq往反方向二分即可。
思路说的差不多了,上代码

代码实现

#include<bits/stdc++.h>
#define ll long long
using namespace std;

int k;
ll n,e,d,ans;
int main(){
	freopen("decode.in","r",stdin);
	freopen("decode.out","w",stdout);
	scanf("%d",&k);
	while(k--){
		scanf("%lld%lld%lld",&n,&e,&d);
		e=(ll)e*d;
		ll m=n-e;
		ll l=1,r=m+1;
		ans=0;
		while(l<=r){
			ll mid=(l+r)>>1;
			ll c=m-mid+2;
			ll cnt=(ll)c*mid;
			if(cnt>n)r=mid-1;
			else if(cnt<n)l=mid+1;
			else {
				ans=mid;
				break;
			}
		}
		ll cc=m-ans+2;
		if(ans*cc!=n)printf("NO\n");
		else printf("%lld %lld\n",min(ans,cc),max(ans,cc));
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

materialistOier

我只是一名ssfoier

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值