1.问题
给定两个字符串,求解这两个字符串的最长公共子序列(Longest Common Sequence)。
比如字符串1:BDCABA;字符串2:ABCBDAB则这两个字符串的最长公共子序列长度为4,最长公共子序列是:BCBA。
在本题中给出s1:ABCDAA s2:ACDUU。
2.解析
首先要分清楚:
子串:表示连续的一串字符。
子序列:表示不连续的一串字符。
S1的最后一个元素与s2的最后一个元素相同,这说明该元素一定位于公共子序列中。因此,现在只需要找:LCS(s1n-1,s2m-1);
如果s1n != s2m,那么产生了两个子问题:LCS(s1n-1,s2m) 和 LCS(s1n,s2m-1)。
解出上面两个子问题,得到的公共子序列后,比较长短,长的就是 LCS(s1,s2)。
对子问题重复以上步骤,就可以得到答案。
这张图对应了三种情况。C[i,j]记录的是子序列长度。
3.设计
void LCS(char *s1, char *s2, int len1, int len2, int c[][MAXLEN], int dir[][MAXLEN]){
int i, j;
for(i = 0; i <= len1; i++) //将第一列设置0
c[i][0] = 0;
for(j = 1; j <= len2; j++) //第一行设置为0
c[0][j] = 0;
for(i = 1; i<= len1; i++){ //用1,0,-1三个整形作为上下斜上的方向标记
for(j = 1; j <= len2; j++){
if(s1[i-1] == s2[j-1]){ //如果最后一个字符相同,那么在剩下的里找
c[i][j] = c[i-1][j-1] + 1;
dir[i][j] = 1;
}
else if(c[i-1][j] >= c[i][j-1]){
c[i][j] = c[i-1][j];
dir[i][j] = 0;
}
else{
c[i][j] = c[i][j-1];
dir[i][j] = -1;
}
}
}
}
4.分析
在动态规划的方法下,只需要线性的时间:O(m*n)的时间复杂度。因为只需要比较m * n次,选出最优解。