矢量分析
向量微分算子
∇ = [ ∂ ∂ x ∂ ∂ y ∂ ∂ z ] T \nabla=\left[\frac{\partial}{\partial {x}} \frac{\partial}{\partial {y}} \frac{\partial}{\partial{z}}\right]^T ∇=[∂x∂∂y∂∂z∂]T算子是一个形式向量,它可以作用于标量 f f f与向量 F ⃗ \vec{F} F上
- 梯度: ∇ u \nabla u ∇u
- 散度: ∇ ⋅ A ⃗ \nabla \cdot \vec{A} ∇⋅A
- 旋度: ∇ × F ⃗ \nabla \times \vec{F} ∇×F
Green、Stokes、Gauss公式是从解决物理问题的计算而得出的,恰好在数学的呈现上有相应积分的转换关系。因此数学的积分计算的意义并不重要。在微积分书中,这些公式出现在第二类曲线与曲面积分中,其推导也是用公式左右推导相等来验证的。
George Green奠定了二维环量的计算,但通量(高斯公式)和三维环量(斯托克斯公式)和George Green的推导过程和思想都是类似的。为了纪念这些科学家的贡献,我们将这些公式冠以了不同的名字,但也是因为这种给以它们的荣誉以及数学教材的编排令我们学习者非常容易在初学时将这些公式割裂开来看,实际上这些公式都可以看作是广义的Green公式。
旋度与Green公式的旋度形式(第一形式) Curl
环流量 Circulation
∮
Γ
A
⃗
⋅
τ
⃗
d
l
\oint_{\Gamma}{\vec{A}\cdot\vec{\tau}dl}
∮ΓA⋅τdl
旋度与Green公式是George Green为了解决螺旋桨在水中的受力问题的计算而提出的。推广把螺旋桨上的一点旋转一圈做的功到力场绕封闭曲线做的功得到的就是环流量。
旋度
- 水流的力可以写成 F ⃗ = P d x + Q d y \vec{F}=Pdx+Qdy F=Pdx+Qdy,某一小段上的做功为切向力的功即 F ⃗ ⋅ d r ⃗ \vec{F}\cdot d\vec{r} F⋅dr,整段封闭曲线的做功为 ∮ Γ + F ⃗ ⋅ d r ⃗ \oint_{\Gamma^+}{\vec{F}\cdot d\vec{r}} ∮Γ+F⋅dr。但这个矢量形式的积分式子是不方便计算的,根据多元微分偏微分的知识,切向量的方向就是梯度的方向,即直角坐标系中可以将 d r ⃗ d\vec{r} dr分解为 d x i ⃗ + d y j ⃗ dx\vec{i}+dy\vec{j} dxi+dyj。原式可写成 ∮ Γ + F ⃗ ⋅ d r ⃗ = ∮ Γ + P d x + Q d y \oint_{\Gamma^+}{\vec{F}\cdot d\vec{r}}=\oint_{\Gamma^+}{Pdx+Qdy} ∮Γ+F⋅dr=∮Γ+Pdx+Qdy,之后通过Green公式(George Green是通过一步步推导得到Green formula的,此处略过),即可得到计算公式 ∮ Γ + F ⃗ ⋅ d r ⃗ = ∮ Γ + P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \oint_{\Gamma^+}{\vec{F}\cdot d\vec{r}}=\oint_{\Gamma^+}{Pdx+Qdy}=\iint_{D}{(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy} ∮Γ+F⋅dr=∮Γ+Pdx+Qdy=∬D(∂x∂Q−∂y∂P)dxdy。
-
旋度的定义
-
旋度是环流量强度: lim A → 0 1 ∣ A ∣ ∮ C F ⃗ ⋅ d r ⃗ ≜ ∇ × F ⃗ ∣ p ⋅ n ⃗ 0 \lim_{A\rightarrow 0}{\frac{1}{\left|A\right|}\oint_{C}{\vec{F}\cdot d\vec{r}}}\triangleq\nabla\times\vec{F}|_p\cdot\vec{n}^0 limA→0∣A∣1∮CF⋅dr≜∇×F∣p⋅n0
-
旋度的方向
旋度的方向根据右手法则得到:下图飞机机翼的涡轮可以很好的表述旋度的方向
-
-
Green公式的直角坐标表示: ∮ Γ P d x + Q d y = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∣ ∂ ∂ x ∂ ∂ y P Q ∣ \oint_{\Gamma}{Pdx+Qdy}=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy=\left|\begin{matrix}\frac{\partial}{\partial x}&\frac{\partial}{\partial y}\\P&Q\\\end{matrix}\right| ∮ΓPdx+Qdy=∬D(∂x∂Q−∂y∂P)dxdy=∣∣∣∣∂x∂P∂y∂Q∣∣∣∣,即第一类曲线积分与二重积分的互相转换.(这是一种从数学角度的计算式,方便我们的实际计算,但从实际物理意义出发,应该用下面的公式)
-
旋度定理: ∮ Γ F ⃗ ⋅ τ d s = ∬ D ( ∇ × F ⃗ ) d S \oint_{\Gamma}{\vec{F}\cdot\tau ds=\iint_{D}{(\nabla\times\vec{F})dS}} ∮ΓF⋅τds=∬D(∇×F)dS 旋度的面积分等于环绕物体的线积分(环量)
-
Stokes: ∮ Γ P d x + Q d y + R d z = ∬ s ( ∂ R ∂ y − ∂ Q ∂ z ) d y d z + ( ∂ P ∂ z − ∂ R ∂ x ) d z d x + ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∬ S ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \oint_{\Gamma}{Pdx+Qdy+Rdz}=\iint_{s}{\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)dydz+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)dzdx+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy}=\iint_{S}\left|\begin{matrix}dydz&dzdx&dxdy\\\frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\P&Q&R\\\end{matrix}\right| ∮ΓPdx+Qdy+Rdz=∬s(∂y∂R−∂z∂Q)dydz+(∂z∂P−∂x∂R)dzdx+(∂x∂Q−∂y∂P)dxdy=∬S∣∣∣∣∣∣dydz∂x∂Pdzdx∂y∂Qdxdy∂z∂R∣∣∣∣∣∣,即第二类曲线积分与第二类曲面积分之间的转换
- 一个初学时候的疑问:为什么Stokes在三维空间中,但用 ∮ Γ \oint_{\Gamma} ∮Γ而不是 ∯ Γ \oiint_{\Gamma} ∬Γ?
-
微积分书中通常对第二类曲线积分的介绍顺序是Green->Gauss->Stokes这可能会让人产生误解。实际上Stokes(三维环量)是对Green(二维环量)的推广。
散度与格林公式的散度形式(第二形式) Divergence
通量 Flux
-
在物理研究中,很多时候都要研究以某个点为圆心,单位时间内从这个点散发出来的某些物质通过某个曲面的物理量,如以一个电子为圆心,单位事件内从这个电子散发出来的通过其表面的电磁量,或者以某个热源为圆心,单位时间内从这个热源散发出来的通过某表面的热量,或者是一个流体源,单位时间内从从这个流体源散发出来的通过某表面的流量。
-
因此可以定义通量 Flux,即单位时间内通过某表面的物理量。流量也是矢量,可以像力一样被分解为垂直于和切向通过表面的两个流量,显然可知,只有垂直于通过表面的分量(即通量)才有用。因此对于曲面 Σ \Sigma Σ的某一点,每个点的流量为 A ⃗ \vec{A} A,由微积分方法可得它的通量为第一类曲面积分 ∬ Σ A ⃗ ⋅ n ⃗ 0 d S \iint_{\Sigma}{\vec{A}\cdot\vec{n}^0}dS ∬ΣA⋅n0dS
-
在George Green解决环流量问题的过程中,如果将力 F ⃗ \vec{F} F换成某流出/流进量 A ⃗ {\vec{A}} A,同时将切向力 τ ⃗ {\vec{\tau}} τ换成垂直于环表面的单位法向量 n ⃗ 0 \vec{n}^0 n0,由几何知识可得 n ⃗ 0 = ( sin α , − cos α = ( d y , − d x ) ) \vec{n}^0=(\sin{\alpha}, -\cos{\alpha}=(dy, -dx)) n0=(sinα,−cosα=(dy,−dx))。那么就可以得到 ∮ Γ + F ⃗ ⋅ d r ⃗ = ∮ Γ + P d x + Q d y → ∬ Σ A ⃗ ⋅ n ⃗ 0 d S = ∮ Γ + P d y − Q d x = ∬ D ∂ Q ∂ y + ∂ P ∂ x \oint_{\Gamma^+}{\vec{F}\cdot d\vec{r}}=\oint_{\Gamma^+}{Pdx+Qdy}\rightarrow \iint_{\Sigma}{\vec{A}\cdot\vec{n}^0}dS=\oint_{\Gamma^+}{Pdy-Qdx}=\iint_{D}{\frac{\partial Q}{\partial y}+\frac{\partial P}{\partial x}} ∮Γ+F⋅dr=∮Γ+Pdx+Qdy→∬ΣA⋅n0dS=∮Γ+Pdy−Qdx=∬D∂y∂Q+∂x∂P。该推导过程与旋度一样。
散度的定义
-
散度与通量相关,在电磁学和流体力学中有着重要应用。散度是通量强度,势量场 A ⃗ \vec{A} A在 x 0 x_0 x0处的散度定义为: d i v A ⃗ ∣ x 0 = lim A → 0 1 ∣ V ∣ ∯ A ⃗ ⋅ n ⃗ 0 d S div \vec{A}|_{x_0}=\lim_{A\rightarrow 0}{\frac{1}{\left|V\right|}\oiint\vec{A}\cdot\vec{n}^0}dS divA∣x0=limA→0∣V∣1∬A⋅n0dS。某点散度代表了该点向外的通量体密度,即定量地给出向量场中任一点是否为源点(source)或汇点(sink)。
-
Gauss公式的直角坐标计算表达式: ∯ s P d y d z + Q d z d x + R d x d y = ∭ v ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d x d y d z \oiint_{s}{Pdydz+Qdzdx+Rdxdy}=\iiint_{v}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right)dxdydz ∬sPdydz+Qdzdx+Rdxdy=∭v(∂x∂P+∂y∂Q+∂z∂R)dxdydz(这是一种从数学角度的计算式,方便我们的实际计算,但从实际物理意义出发,应该用下面的公式)
-
散度定理/Gauss定理: ∯ S A ⃗ ⋅ n ⃗ 0 d s = ∭ V d i v A ⃗ d V = ∭ V ∇ ⋅ A ⃗ d S ⃗ \oiint_{S}{\vec{A} \cdot \vec{n}^0 ds}=\iiint_{V}{div\vec{A}dV}=\iiint_{V}{\nabla\cdot\vec{A}d\vec{S}} ∬SA⋅n0ds=∭VdivAdV=∭V∇⋅AdS
高斯公式与斯托克斯公式:二者都是描述通量,不同之处在于高斯公式对应有源闭曲面情况,而斯托克斯公式对应无源曲面情况,在此种情况下如果都为闭合曲面,斯托克斯公式对应的通量为零,高斯公式对应的通量非零
应用
保守力场
- 把可以表示为标量函数梯度的力场叫做保守力场,反之则是非保守力场。这里的标量称为力的势场或位势场,也就是势能函数。保守力场的数学表达为 F ⃗ ( x , y , z ) = − ∇ V ( x , y , z ) = − ( ∂ V ∂ x j ⃗ + ∂ V ∂ y k ⃗ + ∂ V ∂ z l ⃗ ) \vec{F}(x,y,z)=-\nabla V(x,y,z)=-(\frac{\partial V}{\partial x}\vec{j}+\frac{\partial V}{\partial y}\vec{k}+\frac{\partial V}{\partial z}\vec{l}) F(x,y,z)=−∇V(x,y,z)=−(∂x∂Vj+∂y∂Vk+∂z∂Vl)
- 保守立场的特点
- 相差一个任意常数的势能函数描述相同的保守立场
- 当质点仅受保守力场作用时,其机械能守恒
- 保守力具有无旋性(充分必要条件)
- 保守力做功与路径无关
- 势能函数极小处是稳定平衡点,极大处为不稳定平衡点
流体力学:对不可压缩理想液体 Navier-Stokes equations
- ρ ( ∂ v ⃗ ∂ t + v ⃗ ⋅ ∇ v ⃗ ) = − ∇ ρ + μ ∇ 2 v ⃗ + F ⃗ \rho(\frac{\partial\vec{v}}{\partial t}+\vec{v}\cdot\nabla\vec{v})=-\nabla\rho+\mu\nabla^2\vec{v}+\vec{F} ρ(∂t∂v+v⋅∇v)=−∇ρ+μ∇2v+F
电磁学:麦克斯韦方程组 Maxwell’s equations
Name | Integral equatoins | Differential equations |
---|---|---|
Gauss’s law | ∯ ∂ Ω E ⃗ ⋅ d S = 1 ε 0 ∭ Ω ρ d V \oiint_{\partial\Omega}{\vec{E}\cdot dS}=\frac{1}{\varepsilon_0}\iiint_{\Omega}{\rho dV} ∬∂ΩE⋅dS=ε01∭ΩρdV | ∇ ⋅ E ⃗ = ρ ε 0 \nabla\cdot\vec{E}=\frac{\rho}{\varepsilon_0} ∇⋅E=ε0ρ |
Gauss’s law for magnetism | ∯ ∂ Ω B ⃗ ⋅ d S = 0 \oiint_{\partial\Omega}{\vec{B}\cdot dS}=0 ∬∂ΩB⋅dS=0 | ∇ ⋅ B ⃗ = 0 \nabla\cdot\vec{B}=0 ∇⋅B=0 |
Maxwell-Farady equation (Faraday’s law of induction) | ∮ ∂ Σ E ⃗ ⋅ d s = − d d t ∬ Σ B ⃗ ⋅ d S \oint_{\partial\Sigma}{\vec{E}\cdot ds}=-\frac{d}{dt}\iint_{\Sigma}{\vec{B}\cdot dS} ∮∂ΣE⋅ds=−dtd∬ΣB⋅dS | ∇ × E ⃗ = − ∂ B ⃗ ∂ t \nabla\times\vec{E}=-\frac{\partial\vec{B}}{\partial t} ∇×E=−∂t∂B |
Ampere’s circutial law (with Maxwell’s addition) | ∮ ∂ Σ B ⃗ ⋅ d s = μ 0 ( ∬ Σ J ⃗ d S + ε d d t ∬ Σ E ⃗ ⋅ d S ) \oint_{\partial\Sigma}{\vec{B}\cdot ds}=\mu_0(\iint_{\Sigma}{\vec{J}dS}+\varepsilon\frac{d}{dt}\iint_{\Sigma}{\vec{E}\cdot dS}) ∮∂ΣB⋅ds=μ0(∬ΣJdS+εdtd∬ΣE⋅dS) | ∇ × B ⃗ = μ 0 ( J ⃗ + ε 0 ∂ E ⃗ ∂ t ) \nabla\times\vec{B}=\mu_0(\vec{J}+\varepsilon_0\frac{\partial\vec{E}}{\partial t}) ∇×B=μ0(J+ε0∂t∂E) |
参考文献
[1] 梯度、散度、旋度与矢量分析 - Hsuty的文章 - 知乎
https://zhuanlan.zhihu.com/p/165479232
[2]散度和旋度的物理意义是什么? - 马同学的回答 - 知乎
https://www.zhihu.com/question/21912411/answer/177976053
[3] 格林公式的几何意义是什么? - 马同学的回答 - 知乎
https://www.zhihu.com/question/22674439/answer/185939984
[4] https://de.wikipedia.org/wiki/Datei:Airplane_vortex_edit.jpg
[5] 格林公式:形式与推广 - 走尽这雨巷的文章 - 知乎
https://zhuanlan.zhihu.com/p/98017196
[6] 普通物理一:牛顿力学基本概念和原理(动力学) - Lawliet的文章 - 知乎
https://zhuanlan.zhihu.com/p/163346367
[7] Calculus Volume 3–Gibert Strang, Edwin Herman