文章来源:
个人博客 翔仔年轻有力量:重建二叉树
题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
- 两个数组,pre []为二叉树前序遍历序列,in []为二叉树中序遍历序列。
- 各遍历序列中不含重复数字
- 要求输出重建的二叉树。
- 节点类初始化如下:
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
思路方法
- 简单来说,需要构造一个二叉树,就是从根节点开始,先构造它的左子树,再构成它的右子树。而构造左/右子树,又可以看做把根节点的左/右子节点各自当做父节点,又构造它们各自的左右子树。故使用递归的方式。
- 而通过给定的前序遍历序列以及中序遍历序列,就可以确立每一次执行递归,谁是父节点,谁在左,谁在右。
- 根据前序序列,第一个元素就是根节点的值。
- 在中序序列中定位根节点的位置,根节点左边(下标小于根节点定位)是其左子树的所有元素。根节点右边(下标大于根节点定位)是其右子树的所有元素。
参考代码
- findBinaryTree方法的参数:
- startPre:每次递归操作pre[]数组的左边界
- endPre: 每次递归操作pre[]数组的右边界
- startIn: 每次递归操作in[]数组的左边界
- endIn: 每次递归操作in[]数组的右边界
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if(pre.length ==0 || in.length == 0)
return null;
return findBinaryTree(pre, 0, pre.length-1, in, 0, in.length-1);
}
public TreeNode findBinaryTree(int[] pre, int startPre, int endPre, int[] in ,int startIn, int endIn){
// 没有符合前序和中序的二叉树或已经到达叶子节点
if(startPre>endPre || startIn>endIn)
return null;
// 根节点为pre数组的首个元素
TreeNode root = new TreeNode(pre[startPre]);
for(int i=startIn;i<=endIn;i++){
if(in[i]==pre[startPre]){
// in-startIn为从In数组中得到的左子树元素个数,i-startIn+startPre即为左子树在Pre数组的右边界
root.left = findBinaryTree(pre, startPre+1, i-startIn+startPre, in, startIn, i-1);
// (i-startIn+startPre)+1:左子树的下一个开始为右子树,是右子树在Pre数组的左边界
root.right = findBinaryTree(pre, i-startIn+startPre+1, endPre, in, i+1, endIn);
}
}
return root;
}
}