自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(60)
  • 收藏
  • 关注

转载 面向对象和面向过程区别

面向过程就是分析出解决问题所需要的步骤,然后用函数把这些步骤一步一步实现,使用的时候一个一个依次调用就可以了;面向对象是把构成问题事务分解成各个对象,建立对象的目的不是为了完成一个步骤,而是为了描叙某个事物在整个解决问题的步骤中的行为。可以拿生活中的实例来理解面向过程与面向对象,例如五子棋,面向过程的设计思路就是首先分析问题的步骤:1、开始游戏,2、黑子先走,3、绘制画面,4、判断输赢,5、轮到...

2018-12-30 23:25:53 261 1

转载 脚本语言

转自:https://zhidao.baidu.com/question/360310158063705932.html脚本语言也可看做编程语言编译语言通过编译器编译代码文件生成可执行程序(二进制文件),交由cpu解释执行;脚本语言交由可执行程序解释执行;(如html代码文件通过浏览器内置的解释器解释执行,这个解释器就是一个专门为html编写的可执行程序,通常是由C、java等语言编写的。...

2018-12-30 22:37:58 1749

转载 PCL点云曲面重建--重采样

测量较小的对象时产生一些误差,直接重建会使曲面不光滑或者有漏洞,为了建立完整的模型需要对表面进行平滑处理和漏洞修复.可通过数据重建来解决这一问题,重采样算法通过对周围数据点进行高阶多项式插值来重建表面缺少的部分.由多个扫描配准后得到的数据直接拿来重建可能产生 "双墙"等重影,即拼接的区域出现重叠的两个曲面,...

2018-12-21 10:13:17 1080 1

转载 五种常用点云滤波

本文主要介绍五中点云滤波方法:直通滤波器、体素滤波器、统计滤波器、条件滤波器、半径滤波器。噪声点与离群点。在获取点云数据时,由于设备精度、操作者经验、环境因素等带来的影响,以及电磁波衍射特性、被测物体表面性质变化和数据拼接配准操作过程的影响,点云数据中将不可避免地出现一些噪声点,属于随机误差。除此之外,由于...

2018-12-19 11:50:04 29353 12

转载 离群点检测

常用两种:1.基于knn搜索的统计滤波器,2.LOF算法统计滤波器:对每个点的邻域进行一个统计分析,并修剪掉一些不符合标准的点。具体方法为在输入数据中对点到临近点的距离分布的计算,对每一个点,计算它到所有临近点的平均距离(假设得到的结果是一个高斯分布,其形状是由均值和标准差决定),那么平均距离在标准范围之外的点,可以被定义为离群点并从数据中去除。该方法对密度不均匀的点云区域滤波效果不好,比如,对...

2018-12-18 21:35:54 1905

转载 meshlab

https://blog.csdn.net/CHS007chs/article/details/24431889

2018-12-18 09:39:45 659

转载 txt格式转pcd

#include “stdafx.h”  #include <pcl/io/pcd_io.h>  #include  using namespace std;  int numofPoints(char* fname){&a

2018-12-15 17:31:30 724

转载 泊松重建

Possion重建是Kazhdan等2006年提出的网格重建方法[1]。Possion重建的输入是点云及其法向量,输出是三维网格。Poisson有公开的源代码[2]。PCL中也有Poisson的实现。核心思想Possion重建是一个非常直观的方法。它的核心思想是点云代表了物体表面的位置,其法向量代表了内外的方向。通过隐式地拟合一个由物体派生的指示函数,可以给出一个平滑的物体表面的估计。给定一...

2018-12-15 17:08:16 1769

转载 泊松重建

Possion重建是Kazhdan等2006年提出的网格重建方法[1]。Possion重建的输入是点云及其法向量,输出是三维网格。Poisson有公开的源代码[2]。PCL中也有Poisson的实现。核心思想Possion重建是一个非常直观的方法。它的核心思想是点云代表了物体表面的位置,其法向量代表了内外的方向。通过隐式地拟合一个由物体派生的指示函数,可以给出一个平滑的物体表面的估计。给定一...

2018-12-15 17:08:16 2852

转载 Visual hull

                          &a

2018-12-13 20:50:45 1976

原创 尺度不变特征变化的一点理解

LoG算子可用高斯差分算子近似。尺度不变特征变化算法中,通过不断降采样得到尺寸不一样的图片,构成金字塔形状。每一层金字塔对应的尺寸的图片被不同尺度的高斯算子模糊,然后相邻尺度模糊过的图片做差分运算,这一过程相当于对该层图片与LoG算子模糊。...

2018-12-05 21:47:54 1649

转载 尺度不变特征变化

             版权声明:本文为博主原创文章,未经博主允许不得转载。     https://blog.csdn.net/u014485485/article/details

2018-12-04 21:36:41 3272

转载 为什么拉普拉斯算子具有旋转不变性

                          &a

2018-12-04 17:37:37 4311

转载 拉普拉斯算子

                          &a

2018-12-01 22:59:16 55358 1

转载 LoG高斯拉普拉斯算子介绍

             版权声明:本文为博主原创文章,未经博主允许不得转载。     https://blog.csdn.net/Touch_Dream/article/detail

2018-12-01 22:04:46 9580 2

转载 卷积理解

             版权声明:请注明出处,可以随意转载     https://blog.csdn.net/qq_39521554/article/details/7908386

2018-12-01 22:03:06 1933

转载 卷积理解

             版权声明:请注明出处,可以随意转载     https://blog.csdn.net/qq_39521554/article/details/7908386

2018-11-30 10:26:18 279

转载 卷积理解

             版权声明:请注明出处,可以随意转载     https://blog.csdn.net/qq_39521554/article/details/7908386

2018-11-30 10:26:18 212

转载 奇异值分解可用于对数据进行压缩和

https://blog.csdn.net/Pwiling/article/details/51227506

2018-11-28 21:06:11 597

原创 奇异值分解为何能求

奇异值分解的作用就是,根据所给出的矩阵,找出该矩阵产生作用的两个标准正交基。假设标准正交基U经过旋转矩阵R后得到标准正交基V,则有RU=V,则R=VU^-1,而奇异值分解就是用来求U和V的,怎么求?为何奇异值分解能找到这两个标准正交基?这是根据特征值分解中“实对称矩阵的特征向量正交”这一性质求解出来的。...

2018-11-28 20:54:27 282

转载 奇异值分解求

                          &a

2018-11-28 17:05:09 193

转载 张正友标定

张正友标定法是利用单应变化,也叫投影变化来建立方程组。单应变化是指图片A到图片B有唯一的点到点的对应关系,即B = HA,H称为单应矩阵。假设棋盘格在世界坐标系中Z=0的平面,此时棋盘格的世界坐标[X,Y,1]可以看作A,相机拍摄的图片可看作B,则单应矩阵H可求。而像素坐标系=内参x外参x世界坐标系, 即,SB=K[R|t]A,S为伸缩因子,则S[h1,h2,h3]=K[r1,r2,t],因为...

2018-11-27 19:02:33 237

转载 特征值分解和奇异值分解的

             版权声明:本文为博主原创文章,未经博主允许不得转载。     https://blog.csdn.net/lyf52010/article/details/7

2018-11-27 15:42:28 198

原创 矩阵的奇异值

矩阵的本质就是把一个行空间基底下的向量变换到列空间基底下,但是这两个基底不一定是正交基底。一个m行n列的矩阵A,其行空间是n维(一行n个数)的而列空间是m维(一列m个数)的,而A的作用就是把一个向量v由n维空间(行空间)变化到m维空间(列空间)中,而矩阵A的特征向量描述的是这个矩阵线性变化的主要方向,属于m维空间中的向量,m维空间中任意一个向量都可以由这些特征向量的线性组合表示出来,假设有...

2018-11-27 09:48:05 3751 1

转载 特征值分解和奇异值分解的

<div class="article_content clearfix csdn-tracking-statistics" id="article_content" data-mod="popu_307" data-dsm="post" data-pid="blog">    &nbsp

2018-11-26 22:55:10 217

转载 特征值和

          原    所谓的特征值和特征向量         &nb

2018-11-26 20:50:10 2992

转载 特征值和特征向量的

https://blog.csdn.net/hjq376247328/article/details/80640544

2018-11-24 22:24:16 171

转载 特征值分解与奇异值

                (一)特征值如果一个非零向量v是方阵A的特征向量,将一定可以表示成下面形式,而λ是特征向量v对应的特征值:特征值分解是将一个矩阵分解成下面的形式:其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角阵,每

2018-11-24 22:15:16 388

转载 张正友标定

                          &a

2018-11-24 01:52:35 2344

转载 单应性

https://blog.csdn.net/czl389/article/details/67689625

2018-11-24 01:34:58 224

转载 单应性

                          &a

2018-11-24 01:00:42 787

转载 对极几何

                          &a

2018-11-24 00:19:07 1335

转载 正交

2018-11-23 15:50:21 182

转载 世界坐标系,相机坐标系,图像物理坐标系,图像像素

                          &a

2018-11-23 11:41:56 3680

原创 TOFl连续波

Depth EstimationThe distance is computed with:d =12cτIn practice τ cannot be measured directly.Continuous wave modulation: The phase difference betweenthe sent and received signals is measured...

2018-11-22 19:46:51 240

转载 深度相机TOF

                          &a

2018-11-22 18:40:39 1522

转载 傅里叶变化和傅里叶级数的区别

             版权声明:本文为博主原创文章,未经博主允许不得转载。     https://blog.csdn.net/yangyuwen_yang/article/det

2018-11-22 10:16:09 3207

转载 傅里叶变化

添加链接描述

2018-11-22 10:15:01 187

转载 傅里叶变化vs拉普拉斯

添加链接描述

2018-11-21 16:42:14 796

转载 strlen与sizeof

Sizeof与Strlen的区别与联系一、sizeof    sizeof(…)是运算符,在头文件中typedef为unsigned int,其值在编译时即计算好了,参数可以是数组、指针、类型、对象、函数等。    它的功能是:获得保证能容纳实现所建立的最大对象的字节大小。    由于在编译时计算,因此...

2018-11-06 02:37:17 121

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除