Darknet YOLO 训练问题集锦

本文汇总了YOLO系列模型(YOLOv1至YOLOv3)训练过程中的常见问题,包括CUDA内存不足、loss不收敛、图片加载失败等,并提供了相应的解决方法。例如,针对CUDA内存不足,可以通过调整batch size和subdivisions;对于loss不收敛,可能需要修改cfg文件中训练和测试的参数设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该文章记录了YOLOv1-YOLOv3训练过程中可能出现的问题,没有特别标明的,在不同版本YOLO训练中都可能存在的问题。

如果大家有问题/不同的解决办法,欢迎留言。更新于6/28/2018

1. CUDA Error: out of memory

配置Makefile,使用GPU,CUDN以及Opencv

GPU=1
CUDNN=1
OPENCV=1
OPENMP=0
DEBUG=0

出现报错:

darknet: ./src/cuda.c:36: check_error: Assertion `0' failed.

原因是GPU内存不够了

1. 可能是有人占用资源,查查后台进程

2. batch size过大,超出了显卡能够承受的范围。可以适当改小cfg文件中的batch,同时让batch和subdivisions保持在一个比较合适的比例,每次传入的图片数量=进行forward propagation的图片数量=batch/subdivisions,进行backward propagation的图片数量=batch (我的理解是这样,如果不对欢迎指正)

 

2. loss不收敛,到处都是nan

使用官网教程里的数据出现lo

评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值