题意
有
n
n
个人,其中 对互相认识。现在想先将它们分成两组,保证组内人员互相不认识。如果能满足,把两个集合中分别抽出一个人分在一个宿舍,保证两人互相认识,求最多能分多少对人。
1≤n≤200
1
≤
n
≤
200
思路
先判是否为二分图,一般采用染色法。即相邻两个点染为不同颜色,如果同一点将被染成不同颜色,则说明存在基环(奇环,自己人才懂…)。当然,另一种方法是使用“影子并查集”,但这种方法不是很好劈开一张图为二分图。而染色法,同种颜色就是二分图的同个集合,比较好实现。
代码
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define FOR(i,x,y) for(int i=(x);i<=(y);i++)
#define DOR(i,x,y) for(int i=(x);i>=(y);i--)
#define N 203
typedef long long LL;
using namespace std;
template<const int maxn,const int maxm>struct Linked_list
{
int head[maxn],to[maxm],nxt[maxm],tot;
void clear(){memset(head,-1,sizeof(head));tot=0;}
void add(int u,int v){to[++tot]=v,nxt[tot]=head[u],head[u]=tot;}
#define EOR(i,G,u) for(int i=G.head[u];~i;i=G.nxt[i])
};
Linked_list<N,N*N>G;
int col[N],mark[N],mc[N];
int n,m;
bool paint(int u,int c)
{
if(col[u])return col[u]==c;
col[u]=c;
EOR(i,G,u)
{
int v=G.to[i];
if(!paint(v,-c))return false;
}
return true;
}
bool match(int u,int stmp)
{
EOR(i,G,u)
{
int v=G.to[i];
if(mark[v]==stmp)continue;
mark[v]=stmp;
if(!mc[v]||match(mc[v],stmp))
{
mc[v]=u;
return true;
}
}
return false;
}
int solve()
{
int ans=0;
FOR(i,1,n)if(col[i]==1&&match(i,i))ans++;
return ans;
}
void clear()
{
G.clear();
memset(col,0,sizeof(col));
memset(mark,0,sizeof(mark));
memset(mc,0,sizeof(mc));
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
clear();
FOR(i,1,m)
{
int u,v;
scanf("%d%d",&u,&v);
G.add(u,v);
G.add(v,u);
}
bool flag=0;
FOR(i,1,n)if(!col[i]&&!paint(i,1))
{
flag=1;
break;
}
if(flag){printf("No\n");continue;}
printf("%d\n",solve());
}
return 0;
}