题意
将 1 1 到 填入一个 N×M N × M 的矩阵中,保证右边的数大于左边,下面的数大于上面,求满足条件矩阵的个数模以 1e9+7 1 e 9 + 7 。
思路
事实上有一个更一般的叫作杨氏矩阵的东西。它满足左边的数大于右边,上面的数大于下面,但它不一定是一个完整的矩阵,如下就是一个杨氏矩阵:
而计算它的方案数又有一个叫钩子定理的东西。
定义一个杨氏矩阵为
λ
λ
,则填满这个矩阵的方案数
dλ
d
λ
为:
dλ=n!∏hλ(i,j) d λ = n ! ∏ h λ ( i , j )
其中
hλ(i,j)
h
λ
(
i
,
j
)
表示
(i,j)
(
i
,
j
)
在矩阵
λ
λ
中的钩子数,其中钩子数
(i,j)=
(
i
,
j
)
=
右边格点个数
+
+
下面格点个数 ,下面是一个杨氏矩阵中的钩子数表:
可以暂时理解为方案数是全排列除以每个格点的钩子数。
代码
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
#define FOR(i,x,y) for(int i=(x);i<=(y);i++)
#define DOR(i,x,y) for(int i=(x);i>=(y);i--)
#define P 1000000007
typedef long long LL;
using namespace std;
void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b){x=1,y=0;return;}
exgcd(b,a%b,y,x);y-=a/b*x;
return;
}
LL inv(LL a,LL Mod)
{
LL x,y;
exgcd(a,Mod,x,y);
return (x%Mod+Mod)%Mod;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
LL ans=1;
FOR(i,2,n*m)(ans*=i)%=P;
FOR(i,1,n)FOR(j,1,m)(ans*=inv(n+m-i-j+1,P))%=P;
printf("%lld\n",ans);
}
return 0;
}