关于区间DP

区间 d p dp dp 是动态规划的一种,一般用于解决贪心不能解决的区间问题。

例:石子合并(弱化版)

思路:

构建模型: n n n 堆石子

状态:

f l , r f_{l,r} fl,r 表示从 l 到 r 合并成最小代价。

  1. 先把区间 [   l , r   ] [\,l,r\,] [l,r] k k k 切成两部分: [   l , k   ] [\,l,k\,] [l,k] [   k + 1 , r   ] [\,k+1,r\,] [k+1,r] k k k 是切分点。

  2. 在把两部分 [   l , k   ] [\,l,k\,] [l,k] [   k + 1 , r   ] [\,k+1,r\,] [k+1,r] 合并起来。

转移方程: f l , r = f l , k + f k + 1 , r + ( s r − s l − 1 ) f_{l,r}=f_{l,k}+f_{k+1,r}+(s_r-s_{l-1}) fl,r=fl,k+fk+1,r+(srsl1)

计算:

f l , k + f k + 1 , r + ( s r − s l − 1 ) f_{l,k}+f_{k+1,r}+(s_r-s_{l-1}) fl,k+fk+1,r+(srsl1)

其中 s r − s l − 1 s_r-s_{l-1} srsl1 表示 [   l , r   ] [\,l,r\,] [l,r] 的石子质量,因为合并两堆石子花费两堆石子的质量和。

初值:

f i , i = 0 f_{i,i}=0 fi,i=0(每堆石子本身为 0 0 0,其余为无穷)。

目标:

f 1 , n f_{1,n} f1,n 为所有合并成一堆的最小代价。


代码:

#include<bits/stdc++.h>
using namespace std;
const int N=3e2+10;
int n,m[N],ans,f[N][N],s[N];
signed main(){
	cin>>n;
	memset(f,0x3f,sizeof(f));
	for(int i=1;i<=n;i++){
		cin>>m[i];
		s[i]=s[i-1]+m[i]; //前缀和 
		f[i][i]=0;
	}
	for(int len=2;len<=n;len++){ //阶段:枚举区间长度 
		for(int l=1;l+len-1<=n;l++){ //状态:枚举区间起点 
			int r=l+len-1; //区间终点 
			for(int k=l;k<r;k++){ //决策:枚举分割点 
				f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
			}
		}
	}
	cout<<f[1][n];
	return 0;
}

看完上面,大家对一条链的区间 d p dp dp 都有所了解了,那如果要在上进行区间 d p dp dp 呢?

石子合并

思路:

正如题目所讲,所有石子组成了一个,我们需要想办法把它转化成来解。

  • 思路一:把链的某条边切断,这样就成了一条链,然后用模板做即可。但这种做法有个弊端:我们需要枚举被切断的边,也就是说在模板 O ( n 3 ) O(n^3) O(n3) 的基础上再加一层,变成了 O ( n 4 ) O(n^4) O(n4),在比赛中拿不到满分的。

  • 思路二:把环切开,在复制一遍,两条链连起来(如下图)。这样子我们就可以做到在区间长度确定的情况下,只移动区间位置而达到环上区间 d p dp dp 的效果。正如下图, ( 1 − 5 ) (1-5) (15) ( 3 − 2 ) (3-2) (32) ( 5 − 4 ) (5-4) (54) 都是其中的合法情况。因此,我们只扩大了一点点空间( O ( n ) ⇒ O ( 2 n ) \small O(n)\Rightarrow O(2n) O(n)O(2n)),换来了时间的维护( O ( n 3 ) ⇒ O ( n 3 ) \small O(n^3)\Rightarrow O(n^3) O(n3)O(n3)),非常香。

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=310;
int a[N],s[N],f[N][N],F[N][N],_maxn=-1e9,_minn=1e9;
int n;
int main(){
	memset(f,0x3f,sizeof(f));
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		a[i+n]=a[i];
	}
	for(int i=1;i<=2*n;i++){
		s[i]=s[i-1]+a[i];
		f[i][i]=0;
		F[i][i]=0; 
	}
	for(int len=2;len<=n;len++){
		for(int l=1;l+len-1<=2*n;l++){
			int r=l+len-1;
			for(int k=l;k<r;k++){
				F[l][r]=max(F[l][r],F[l][k]+F[k+1][r]+s[r]-s[l-1]);
				f[l][r]=min(f[l][r],f[l][k]+f[k+1][r]+s[r]-s[l-1]);
			}
		} 
	}
	for(int i=1;i<=n;i++){
		_maxn=max(_maxn,F[i][i+n-1]);
		_minn=min(_minn,f[i][i+n-1]);
	}
	cout<<_minn<<"\n"<<_maxn;
	return 0;
}

综上所述,区间 d p dp dp 也就是要根据题目确定区间大小,确定遍历范围,确定转移目标,最后改个模板就可以快乐 AC ⁡ \operatorname{AC} AC 了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值