图片来源:百度图片
1.什么是机器学习
“机器学习之父”、卡内基梅隆大学计算机学院院长汤姆·米切尔(Tom Michael Mitchell)在1997年给机器学习这样的定义:
对于一个给定的任务T(Task),在合理的性能度量方案P(Performance)的前提下,某个计算程序可以自主学习任务T的经验E(Experience);随着提供合适的,优质的,大量的经验E,该程序对于任务T的性能会逐步提高。
也就是说,随着任务的不断执行,经验的积累可以带来任务完成状态的提升。
一般认为,机器学习是人工智能的一个分支,我们使用计算机来设计一个系统,或者说计算模型,使它能够根据提供的训练数据按照一定的方式来"学习";随着训练次数的增加,该系统通过模型参数的优化来不断提升性能,使得模型能够预测相关问题的输出。
2.机器学习的分类
监督学习
无监督学习
强化学习
3.机器学习可以做什么
对给定的数据进行预测
- 数据清洗,特征选择
- 确定算法模型,参数优化
- 给出预测结果