机器学习概述


在这里插入图片描述

图片来源:百度图片

1.什么是机器学习

“机器学习之父”、卡内基梅隆大学计算机学院院长汤姆·米切尔(Tom Michael Mitchell)在1997年给机器学习这样的定义:

对于一个给定的任务T(Task),在合理的性能度量方案P(Performance)的前提下,某个计算程序可以自主学习任务T的经验E(Experience);随着提供合适的,优质的,大量的经验E,该程序对于任务T的性能会逐步提高。

也就是说,随着任务的不断执行,经验的积累可以带来任务完成状态的提升。

一般认为,机器学习是人工智能的一个分支,我们使用计算机来设计一个系统,或者说计算模型,使它能够根据提供的训练数据按照一定的方式来"学习";随着训练次数的增加,该系统通过模型参数的优化来不断提升性能,使得模型能够预测相关问题的输出。

2.机器学习的分类

监督学习

无监督学习

强化学习

3.机器学习可以做什么

对给定的数据进行预测

  • 数据清洗,特征选择
  • 确定算法模型,参数优化
  • 给出预测结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值