[算法设计与分析]4.1.3迭代法解方程(牛顿迭代法+二分法解方程)

本文介绍了使用牛顿迭代法和二分法解决方程的方法。通过C++代码实现,展示了解析过程,直至达到预设精度。牛顿迭代法通过迭代更新求解,而二分法则利用区间不断缩窄来找到方程根。
摘要由CSDN通过智能技术生成
#include<stdio.h>
#include<iostream>
#include<math.h>

using namespace std;

void NewtonIteration();//牛顿迭代法求解方程
void DichotomySolving();//二分法求解方程

int main ()
{
    NewtonIteration();
    DichotomySolving();
}

//牛顿迭代法:y=f(x0)+f'(x0)(x-x0)-> 0=f+f'(x-x0)->x=x0-f/f'
void NewtonIteration()
{
    int a = 3, b = 2, c = 1, d = -6;//系数

    float x1 = 1, x0;
    float f0, f1;//f0是原方程 f1是方程的一阶导
    do
    {
        x0 = x1;
        f0 = ((a * x0 + b) * x0 + c) * x0 + d;//即a*x^3+b*x^2+c*x+d
        f1 = (3 * a * x0 + 2 * b) * x0 + c;//一阶导数
        x1 = x0 - f0/f1;
    }while(fabs(x1 - x0) >= 1e-4);
    printf("(%d)x^3+(%d)x^2+(%d)x+(%d) = 0\n", a, b, c, d);
    cout << "方程的解为:" << x1 << endl;
}

void DichotomySolving()//二分法求解方程
{
    float x, x1 = 0, x2 = 2;
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值