LeetCode 第132场周赛

94 篇文章 0 订阅

第一次做,很菜,只记录了会的

5024. 除数博弈

爱丽丝和鲍勃一起玩游戏,他们轮流行动。爱丽丝先手开局。

最初,黑板上有一个数字 N 。在每个玩家的回合,玩家需要执行以下操作:

  • 选出任一 x,满足 0 < x < NN % x == 0
  • N - x 替换黑板上的数字 N

如果玩家无法执行这些操作,就会输掉游戏。

只有在爱丽丝在游戏中取得胜利时才返回 True,否则返回 false。假设两个玩家都以最佳状态参与游戏。

示例 1:

输入:2
输出:true
解释:爱丽丝选择 1,鲍勃无法进行操作。

示例 2:

输入:3
输出:false
解释:爱丽丝选择 1,鲍勃也选择 1,然后爱丽丝无法进行操作。

提示:

  1. 1 <= N <= 1000

可以看出,偶数爱丽丝能赢

class Solution {
public:
    bool divisorGame(int N) {
        if(N&1)
            return false;
        return true;
    }
};

看了前排大佬的dp也是理解了

dp[i]代表Ni时爱丽丝能不能赢,这种题状态都是和前面有关,dp嘛,所以就是枚举i-N的时候,然后判断,每次两个人都是做最优的选择,也就是只要爱丽丝能通过一种方式赢就可以了,判断爱丽丝赢不赢也就是看鲍勃输不输(废话),判断 d p [ i − j ] , j ∈ [ 1 , i ) , i m o d j = = 0 dp[i-j],j \in [1,i) ,i mod j==0 dp[ij],j[1,i),imodj==0

class Solution {
public:
    bool divisorGame(int N) {
        vector<int> dp(N+1,0);
        for(int i=1;i<=N;++i)
            for(int j=1;j<i;++j)
                if(i%j==0) // 或者用第一清华大佬的优秀位运算dp[i]|=!dp[i-j];%%%%%%%%%了
                    if(!dp[i-j]) 
                    {
                        dp[i]=1;
                        break;// 只要有一种可能性能赢就行
                    }
        return dp[N];
    }
};

5030. 节点与其祖先之间的最大差值

给定二叉树的根节点 root,找出存在于不同节点 AB 之间的最大值 V,其中 V = |A.val - B.val|,且 AB 的祖先。

(如果 A 的任何子节点之一为 B,或者 A 的任何子节点是 B 的祖先,那么我们认为 A 是 B 的祖先)

示例:

在这里插入图片描述

输入:[8,3,10,1,6,null,14,null,null,4,7,13]
输出:7
解释: 
我们有大量的节点与其祖先的差值,其中一些如下:
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
在所有可能的差值中,最大值 7 由 |8 - 1| = 7 得出。

提示:

  1. 树中的节点数在 25000 之间。
  2. 每个节点的值介于 0100000 之间。

开始不知道咋做,后来发现就是一个dfs只不过每次只把点的值保留到当前层及以下,如果回溯到父亲节点把其弹出即可

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution
{
  public:
    int ans = 0;
    vector<int> nums;
    void dfs(TreeNode *root)
    {
        if (root == nullptr)
            return;
        for (int num : nums)
            ans = max(ans, abs(root->val - num)); //找最大值
        nums.push_back(root->val);
        dfs(root->left);
        dfs(root->right);
        nums.pop_back(); //需要回溯到父亲层,将其弹出,不能再用
    }

    int maxAncestorDiff(TreeNode *root)
    {
        dfs(root);
        return ans;
    }
};

观摩了一下第一清华大佬的代码,又非常%%%%%%%%%%,确实如上述for循环的功能一样,就是要找最大值和最小值,那么我们可不可以在递归的时候传递这两个值呢,当然可以,而且这两个值在回溯以后会一直保持是当前层及以上的最大最小值,非常方便简洁

class Solution
{
  public:
    int find(TreeNode *root, int maxn, int minn)
    {
        if (root == nullptr)
            return 0;
        int ans = max(maxn - root->val, root->val - minn); //和最大最小值比较
        maxn = max(maxn, root->val);
        minn = min(minn, root->val);
        int l = find(root->left, maxn, minn);  //左
        int r = find(root->right, maxn, minn); //右
        ans = max(ans, max(l, r));
        return ans;
    }
    int maxAncestorDiff(TreeNode *root)
    {
        return find(root, -100000, 100000); //边界值
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值