P1939 【模板】矩阵加速

题目描述

a[1]=a[2]=a[3]=1

a[x]=a[x-3]+a[x-1] (x>3)

求a数列的第n项对1000000007(10^9+7)取余的值。

输入格式:

第一行一个整数T,表示询问个数。

以下T行,每行一个正整数n。

输出格式:

每行输出一个非负整数表示答案。

输入样例#1:
3
6
8
10
输出样例#1:
4
9
19
说明

对于30%的数据 n<=100;

对于60%的数据 n<=2*10^7;

对于100%的数据 T<=100,n<=2*10^9;


矩阵乘法

自己推了一种

[ F n , F n + 1 , F n + 2 , F n + 3 ] = [ F n − 1 , F n , F n + 1 , F n + 2 ] ∗ [ 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 ] [F_n,F_{n+1},F_{n+2},F_{n+3}]=[F_{n-1},F_{n},F_{n+1},F_{n+2}]*\left[\begin{array}{ccc}0&amp;0&amp;1&amp;0\\1&amp;0&amp;0&amp;1\\0&amp;1&amp;1&amp;0\\0&amp;0&amp;0&amp;1 \end{array}\right] [Fn,Fn+1,Fn+2,Fn+3]=[Fn1,Fn,Fn+1,Fn+2]0100001010100101

#include <cstring>
#include <iostream>
using namespace std;
static const auto io_sync_off = []() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    return nullptr;
}();

using ll = long long;
const int mod = 1e9 + 7;
int T, n;

void mul(int f[4], int a[4][4])
{
    int c[4];
    memset(c, 0, sizeof(c));
    for (int i = 0; i < 4; ++i)
        for (int j = 0; j < 4; ++j)
            c[i] = (c[i] + (ll)f[j] * a[j][i]) % mod;
    memcpy(f, c, sizeof(c));
}

void mulself(int a[4][4])
{
    int c[4][4];
    memset(c, 0, sizeof(c));
    for (int i = 0; i < 4; ++i)
        for (int j = 0; j < 4; ++j)
            for (int k = 0; k < 4; ++k)
                c[i][j] = (c[i][j] + (ll)a[i][k] * a[k][j]) % mod;
    memcpy(a, c, sizeof(c));
}

int main()
{
    cin >> T;
    while (T--)
    {
        cin >> n;
        int f[4] = {1, 1, 1, 2};
        int a[4][4] = {{0, 0, 1, 0}, {1, 0, 0, 1}, {0, 1, 1, 0}, {0, 0, 0, 1}};
        for (n -= 1; n; n >>= 1)//递推式下标从0开始,所以减一
        {
            if (n & 1)
                mul(f, a);
            mulself(a);
        }
        cout << f[0] << endl;
    }
    return 0;
}

看解析发现有更简单的

[ F n , F n − 1 , F n − 2 ] = [ F n − 1 , F n − 2 , F n − 3 ] ∗ [ 1 1 0 0 0 1 1 0 0 ] [F_n,F_{n-1},F_{n-2}]=[F_{n-1},F_{n-2},F_{n-3}]*\left[\begin{array}{ccc}1&amp;1&amp;0\\0&amp;0&amp;1\\1&amp;0&amp;0\end{array}\right] [Fn,Fn1,Fn2]=[Fn1,Fn2,Fn3]101100010

if (n < 3)
{
	cout << 1 << endl;
    continue;
}
int f[3] = {1, 1, 1};
int a[3][3] = {{1, 1, 0}, {0, 0, 1}, {1, 0, 0}};
for (n -= 3; n; n >>= 1)//减3
{...}
Eigen是一个高效的C++开源线性代数库,支持矩阵和向量操作、数值分析以及相关的算法。它广泛用于科学计算、机器学习等领域。 ### Eigen库中的矩阵相乘 在Eigen中,矩阵相乘非常直观简单,只需利用 `*` 运算符即可完成两个矩阵之间的乘法运算。例如: ```cpp #include <Eigen/Dense> #include <iostream> int main() { // 定义两个3x3的矩阵A和B Eigen::Matrix3d A; Eigen::Matrix3d B; // 初始化矩阵A和B A << 1, 2, 3, 4, 5, 6, 7, 8, 9; B << 9, 8, 7, 6, 5, 4, 3, 2, 1; // 矩阵相乘 (A * B) Eigen::Matrix3d C = A * B; std::cout << "结果矩阵 C:\n" << C << std::endl; return 0; } ``` #### 关键点说明: 1. **维度匹配**:矩阵相乘的前提条件是第一个矩阵的列数必须等于第二个矩阵的行数。 - 假设矩阵 \( A \) 的大小为 \( m \times n \),矩阵 \( B \) 的大小为 \( n \times p \),那么它们的乘积 \( C \) 将会是一个 \( m \times p \) 的矩阵。 2. **性能优化**:Eigen内置了高度优化的模板元编程技术,并且能够自动展开小型固定尺寸矩阵的操作,避免动态内存分配开销。此外还支持SIMD指令集加速(如SSE、AVX等),显著提高运行效率。 3. **表达式惰性求值机制**:为了避免不必要的中间对象创建,提升程序的整体性能,Eigen采用了一种叫“表达式模板”的设计模式来进行延迟计算处理。 如果需要对大规模稀疏矩阵做运算,则可以考虑使用其提供的专门针对稀疏数据结构的功能模块——SparseModule。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值