MapReduce概述和体系结构----学习笔记

本文介绍了MapReduce作为并行计算框架,其核心是map和reduce函数,采用分而治之策略。MapReduce将大数据集切分成独立分片并行处理,而计算靠近数据以减少传输开销。在Hadoop实现中,MapReduce架构包含Client、JobTracker、TaskTracker和Task,JobTracker负责调度,TaskTracker执行任务,Task分为Map Task和Reduce Task。
摘要由CSDN通过智能技术生成

传统并行计算框架和MapReduce对比:


高度抽象为两个函数:map函数和Reduce函数;

策略:分而治之(即:任务结果不依赖其他计算结果);

理念:计算向数据靠拢,而不是数据向计算靠拢;因为:大数据传输开销巨大;

Split(分片):一个存储在分布式文件系统中的大规模数据集,会被切分成许多独立的分片(split),这些分片可以被多个Map任务并行处理;

架构:Master/Slave架构;Master上运行JobTracker,Slave上运行TaskTracker;

Hadoop框架是用Java实现的,但是,MapReduce应用程序则不一定要用Java来写 ;

体系结构:Client、JobTracker、TaskTracker、Task;

Client:

用户编写的MapReduce程序通过Client提交到JobTracker端;

用户可通过Client提供的一些借口查看作业运行状态;

JobTracker:

JobTracker负责资源监控和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值