题目描述
在N*N 的棋盘上放置 N 个皇后(n<=10)而彼此不受攻击(即在棋盘的任一行,任一列和任一对角线上不能放置 2 个皇后),编程求解所有的摆放方法。
输入
一行一个整数n。
输出
每行输出一种方案,每种方案顺序输出皇后所在的列号,各个数占5个字符的位置。若无方案,则输出 no solute!
样例输入
4
样例输出
2 4 1 3
3 1 4 2
题解
首先我们需要理解,每一行、每一列必须有一个皇后,对角线上至多有一个皇后。因此我们可以枚举每一行的皇后在第几列,来dfs递归解决问题。关键就在于怎么判断两个皇后的位置不合法。首先是列,我们可以O(n)枚举之前的皇后是否有纵坐标在此列,如果有,就不能选当前列,continue就可以了。然后就是对对角线的判断:两个皇后在同一对角线上等价于两个皇后的横纵坐标差的绝对值相同,即夹角为45°。如此即可递归求出所以方案。注意只有n=2,3时没有答案。而每个数占5个字符可以用%5d来直接解决。详情见代码。
参考代码
#include<cstdio>
using namespace std;
int n,x[30],ph=0;
int abs1(int p) { return p>0?p:-p; }
void dfs(int k)
{
if(k==n+1)
{
ph=1;
for(int i=1;i<=n;i++)
printf("%5d",x[i]);
printf("\n");//输出答案
return ;
}
if(k==1)//第一层无要求,直接选
{
for(int i=1;i<=n;i++)
{
x[k]=i;dfs(k+1);
}
return;
}
for(int i=1;i<=n;i++)
{
int pd=0;
for(int j=1;j<k;j++)
{
if(x[j]==i||abs1(k-j)==abs1(x[j]-i))//判断两个皇后是否合法
{
pd=1;break;
}
}
if(pd==0)
{
x[k]=i;
dfs(k+1);
}
}
}
int main()
{
scanf("%d",&n);
dfs(1);
if(ph==0) printf("no solute!");
return 0;
}