全球前十!DolphinDB如何用“存算一体”改写时序数据库格局?

AgenticCoding·十二月创作之星挑战赛 10w+人浏览 321人参与

这并非一篇普通的公关通稿,这是中国基础软件于无人区奋力突破的真实战报。
当2025年全球时序数据库排行榜发布,DolphinDB强势杀入全球前十、稳居国产第一的消息刷屏时,外界的第一反应往往是质疑:这家公司凭什么?

但如果你深入到上海陆家嘴的金融交易室、宜昌的电力调度中心、或者深圳的精密制造车间,你会发现——DolphinDB早就在最严苛的战场上,把“质疑”打成了“敬畏”。
那些好几个月前还需要依靠Kdb+或者InfluxDB的行业大腕们,如今都把核心的数据处理那一部分,全部迁移到DolphinDB了,这背后推动的动力再简单不过了,存储成本降低了70%,查询时间从分钟级缩减到秒级,而且在极端并发的时候,还能够实现千万级每秒的数据写入。
这不是PPT上的营销数字,这是真金白银砸出来的护城河。 DolphinDB用一次架构级的降维打击,完成了从“国产替代”到“全球领跑”的弯道超车。

硬核实力:解构排名背后的“技术黑科技”

想要弄明白DolphinDB为什么能够改写国际规则,我们不能只关注排名,避免把它底层的架构逻辑,搁置一旁不去分析一番。
传统时序数据库存在的问题就是割裂,存储就是存储(采用HBase或者Cassandra)、计算就是计算(运用Spark或者Flink)、因子挖掘还得弄一套Python。
数据在这些异构系统间搬运,每一次ETL(提取、转换、加载)都是对性能的谋杀。

存算一体与矢量化执行:消灭数据搬运

DolphinDB的核心突破,在于其自身的分布式架构以及存算融合的设计,它并非是那样的普通数据库,而是整合了高性能存储引擎、实时计算引擎以及向量化编程语言的三位一体平台。
技术原理:数据进入库内后,无需移动即可进行计算。
DolphinDB采用了列式存储(ColumnarStorage)结合LSM-tree(日志结构合并树)的改良架构,利用CPU的SIMD(单指令多数据)指令集进行矢量化执行。
这也就意味着它处理数据并非是逐行地去读取,而是按批地开展扫描,这样就极大地减少了CPU的分支预测,失败率以及缓存未命中率。
性能方面的结果是:这样的架构让系统,开销直接从30%降到50%,计算性能实现了大幅度的指数级攀升。

极致吞吐与微秒级响应

写入能力方面,依托其自身独有的压缩算法,(例如Delta-of-Delta编码),DolphinDB在单节点基准测试里实现了超千万点每秒的写入速率。

这就好比在1秒钟之内,把纳斯达克交易所一整天的数据增量,给吸纳进来。

查询引擎,其Swordfish引擎并非是简略的检索工具,而是一个可以支撑分布式并行计算的强壮存在,它能够在,毫秒级将数十亿条记载进行聚合分析,乃至还能支撑个位数微秒级的点查询,这不是实验室里的数据,而是根据实在生产环境压测的铁律。

开发生态:从“能用”到“爱用”

与那特别难以理解的Kdb+的Q语言不一样,DolphinDB内置了超过2000个数学、统计、信号处理函数,并且支持标准SQL还有类似Python的脚本,它还打通了AI的最后那一段路径,依靠JIT(即时编译)技术,让脚本语言能够跑出跟C++一样的速度,大大的降低了开发者,的学习难度以及工程落地难度。

场景验证:头部行业用万亿资产投出的信任票

技术好不好,场景说了算。 截至2025年12月,DolphinDB已服务近200家头部企业,涵盖金融、能源、制造等对数据容错率为零的领域。

金融领域的“生死时速”:中信证券与易方达的高频博弈

在量化交易当中,早1毫秒就意味着能赚到钱,晚1毫秒就好像去接手别人的盘。
场景痛点:传统架构下,从清洗数据到生成因子,再到回测,往往需要数小时。
DolphinDB解法:利用其特有的As-ofJoin(非同步连接)和WindowJoin功能,DolphinDB解决了金融数据时间戳不对齐的各个难题。
在中信证券,行情查询从分钟级缩减至秒级,投研效率提升10-100倍。
AI赋能:结合最新的Gemini3大模型与DolphinDB的StarfishAI研报助手,因子代码生成的准确率从20%飙升至50%,让量化投研从“人工炼金”进化为“工业化生产”。

能源领域的“海量吞吐”:长江电力的百万测点大考

长江电力面对的是数千个监测点、百万级时序数据,这是工业互联网的极限压力测试。
技术深度:DolphinDB部署了一套云边协同架构。
在边缘端进行数据的清洗、滤波和降采样,在云端进行全量汇聚。
当处于百万个测点一起运作的场景里,它内部的流,计算引擎把滤波、复位这类比较复杂算法的延迟,从1000毫秒压缩到50毫秒以内,这并不只是效率得到了提高,更是对安全防线进行了故障回顾,检查变成了“毫秒级事前预警。

制造领域的“数字孪生”:比亚迪与中国航天的产线革命

对于比亚迪和中国航天而言,每条产线上的数万个传感器每秒都在产生海量数据。
市场需求:制造业急需解决的是“写得进去,查不出来”的僵尸数据问题。
DolphinDB可以支撑日均86.4亿条数据的写入以及实时分析,进而实现产线状态的实时数字孪生,这便是解决方案,查询和写入的延迟都被压缩到了毫秒级,为预测性维护提供了稳定的数据基础。

未来图景:从“数据库”到“时序智能生态”

DolphinDB不只是满足于存储数据,它正在积极规划下一代技术升级,打算构建覆盖全场景的时序智能生态。

技术路线图:云原生与AI的深度融合

  • 云原生进化(CloudNative): DolphinDB正加速向Serverless架构演进,利用Kubernetes实现计算资源的弹性伸缩,真正做到“用完即走,按需付费”,进一步降低企业TCO(总拥有成本)。

  • AI算子库的整合: 打算深入地把PyTorch和TensorFlow的生态体系,进行融合,在数据库里面直接支持张量计算(TensorComputing),让数据库直接变成AI推理引擎,实现“数据不流出数据库,模型可以运转起来。

市场拓荒:千亿赛道的星辰大海

  • 车联网(IoV): 随着自动驾驶迈向L4级别,车端产生的数据呈爆炸式增长。DolphinDB正布局车云一体化数据方案,处理激光雷达与CAN总线的高频时序数据。

  • 数字能源: 在虚拟电厂和储能调峰领域,DolphinDB致力于解决源网荷储的实时平衡计算问题,这将是一个万亿级的蓝海市场。

结语:国产软件的“领跑”启示录

全球前十,有DolphinDB的一个位置,不单单是一个企业获得了成功,更是国产基础软件从跟随者转成领跑者的一个体现。
它给行业带来的启发是,真正的国产替代,不能依赖情怀或保护,而是要凭借技术实力实现降维打击,从底层存储引擎的重新构建,到计算架构的深度融合创新,再到对国产CPU的全面适配,DolphinDB表明,只要痛点抓得准、产品性能做到极致,国际市场自然会打开大门。
在2025年这个时间节点上,我们看到的不仅仅是一个数据库的崛起,而是中国科技在关键赛道上,正在一个个拿回定义权。

未来已来,唯快不破。

(声明,这篇文章是依据真实的技术参数,以及市场表现来撰写的,其中部分具有前瞻性的内容是,根据2025年的行业趋势来推断的,它的目的,是传递国产技术取得突破的积极价值,)

以下是将之使用 PHP 和数组创建新闻内容并带有网页样式的查询代码改写成使用数据库创建新闻内容的代码示例。假设使用 MySQL 数据库,并且已经创建了一个名为 `news` 的数据库,其中有一个名为 `news_table` 的表,表结构如下: ```sql CREATE TABLE news_table ( id INT AUTO_INCREMENT PRIMARY KEY, title VARCHAR(255) NOT NULL, date DATE NOT NULL, content TEXT NOT NULL ); ``` 以下是 PHP 代码: ```php <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>新闻内容查询</title> <style> body { font-family: Arial, sans-serif; background-color: #f4f4f4; margin: 0; padding: 20px; } h1 { text-align: center; color: #333; } form { text-align: center; margin-bottom: 20px; } input[type="text"] { padding: 8px; width: 300px; border: 1px solid #ccc; border-radius: 4px; } input[type="submit"] { padding: 8px 15px; background-color: #007BFF; color: white; border: none; border-radius: 4px; cursor: pointer; } input[type="submit"]:hover { background-color: #0056b3; } .news-container { background-color: white; padding: 20px; border-radius: 8px; box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); } .news-item { margin-bottom: 20px; border-bottom: 1px solid #eee; padding-bottom: 20px; } .news-title { font-size: 20px; font-weight: bold; color: #333; margin-bottom: 10px; } .news-date { font-size: 14px; color: #999; margin-bottom: 10px; } .news-content { font-size: 16px; color: #666; } </style> </head> <body> <h1>新闻内容查询</h1> <form action="" method="get"> <input type="text" name="query" placeholder="输入关键词查询新闻"> <input type="submit" value="查询"> </form> <?php // 数据库连接信息 $servername = "localhost"; $username = "your_username"; $password = "your_password"; $dbname = "news"; // 创建连接 $conn = new mysqli($servername, $username, $password, $dbname); // 检查连接 if ($conn->connect_error) { die("连接失败: " . $conn->connect_error); } $query = isset($_GET['query']) ? $_GET['query'] : ""; $sql = ""; if ($query) { $query = $conn->real_escape_string($query); $sql = "SELECT * FROM news_table WHERE title LIKE '%$query%' OR content LIKE '%$query%'"; } else { $sql = "SELECT * FROM news_table"; } $result = $conn->query($sql); if ($result->num_rows > 0) { echo '<div class="news-container">'; while ($row = $result->fetch_assoc()) { echo '<div class="news-item">'; echo '<div class="news-title">' . $row['title'] . '</div>'; echo '<div class="news-date">' . $row['date'] . '</div>'; echo '<div class="news-content">' . $row['content'] . '</div>'; echo '</div>'; } echo '</div>'; } else { echo '<p style="text-align: center; color: red;">未找到相关新闻。</p>'; } $conn->close(); ?> </body> </html> ``` ### 注意事项 - 需要将 `$username` 和 `$password` 替换为实际的数据库用户名和密码。 - 代码中使用了 `real_escape_string` 函数来防止 SQL 注入攻击。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

链上数据客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值