
这并非一篇普通的公关通稿,这是中国基础软件于无人区奋力突破的真实战报。
当2025年全球时序数据库排行榜发布,DolphinDB强势杀入全球前十、稳居国产第一的消息刷屏时,外界的第一反应往往是质疑:这家公司凭什么?
但如果你深入到上海陆家嘴的金融交易室、宜昌的电力调度中心、或者深圳的精密制造车间,你会发现——DolphinDB早就在最严苛的战场上,把“质疑”打成了“敬畏”。
那些好几个月前还需要依靠Kdb+或者InfluxDB的行业大腕们,如今都把核心的数据处理那一部分,全部迁移到DolphinDB了,这背后推动的动力再简单不过了,存储成本降低了70%,查询时间从分钟级缩减到秒级,而且在极端并发的时候,还能够实现千万级每秒的数据写入。
这不是PPT上的营销数字,这是真金白银砸出来的护城河。 DolphinDB用一次架构级的降维打击,完成了从“国产替代”到“全球领跑”的弯道超车。
硬核实力:解构排名背后的“技术黑科技”
想要弄明白DolphinDB为什么能够改写国际规则,我们不能只关注排名,避免把它底层的架构逻辑,搁置一旁不去分析一番。
传统时序数据库存在的问题就是割裂,存储就是存储(采用HBase或者Cassandra)、计算就是计算(运用Spark或者Flink)、因子挖掘还得弄一套Python。
数据在这些异构系统间搬运,每一次ETL(提取、转换、加载)都是对性能的谋杀。
存算一体与矢量化执行:消灭数据搬运
DolphinDB的核心突破,在于其自身的分布式架构以及存算融合的设计,它并非是那样的普通数据库,而是整合了高性能存储引擎、实时计算引擎以及向量化编程语言的三位一体平台。
技术原理:数据进入库内后,无需移动即可进行计算。
DolphinDB采用了列式存储(ColumnarStorage)结合LSM-tree(日志结构合并树)的改良架构,利用CPU的SIMD(单指令多数据)指令集进行矢量化执行。
这也就意味着它处理数据并非是逐行地去读取,而是按批地开展扫描,这样就极大地减少了CPU的分支预测,失败率以及缓存未命中率。
性能方面的结果是:这样的架构让系统,开销直接从30%降到50%,计算性能实现了大幅度的指数级攀升。
极致吞吐与微秒级响应
写入能力方面,依托其自身独有的压缩算法,(例如Delta-of-Delta编码),DolphinDB在单节点基准测试里实现了超千万点每秒的写入速率。
这就好比在1秒钟之内,把纳斯达克交易所一整天的数据增量,给吸纳进来。
查询引擎,其Swordfish引擎并非是简略的检索工具,而是一个可以支撑分布式并行计算的强壮存在,它能够在,毫秒级将数十亿条记载进行聚合分析,乃至还能支撑个位数微秒级的点查询,这不是实验室里的数据,而是根据实在生产环境压测的铁律。
开发生态:从“能用”到“爱用”
与那特别难以理解的Kdb+的Q语言不一样,DolphinDB内置了超过2000个数学、统计、信号处理函数,并且支持标准SQL还有类似Python的脚本,它还打通了AI的最后那一段路径,依靠JIT(即时编译)技术,让脚本语言能够跑出跟C++一样的速度,大大的降低了开发者,的学习难度以及工程落地难度。
场景验证:头部行业用万亿资产投出的信任票
技术好不好,场景说了算。 截至2025年12月,DolphinDB已服务近200家头部企业,涵盖金融、能源、制造等对数据容错率为零的领域。
金融领域的“生死时速”:中信证券与易方达的高频博弈
在量化交易当中,早1毫秒就意味着能赚到钱,晚1毫秒就好像去接手别人的盘。
场景痛点:传统架构下,从清洗数据到生成因子,再到回测,往往需要数小时。
DolphinDB解法:利用其特有的As-ofJoin(非同步连接)和WindowJoin功能,DolphinDB解决了金融数据时间戳不对齐的各个难题。
在中信证券,行情查询从分钟级缩减至秒级,投研效率提升10-100倍。
AI赋能:结合最新的Gemini3大模型与DolphinDB的StarfishAI研报助手,因子代码生成的准确率从20%飙升至50%,让量化投研从“人工炼金”进化为“工业化生产”。
能源领域的“海量吞吐”:长江电力的百万测点大考
长江电力面对的是数千个监测点、百万级时序数据,这是工业互联网的极限压力测试。
技术深度:DolphinDB部署了一套云边协同架构。
在边缘端进行数据的清洗、滤波和降采样,在云端进行全量汇聚。
当处于百万个测点一起运作的场景里,它内部的流,计算引擎把滤波、复位这类比较复杂算法的延迟,从1000毫秒压缩到50毫秒以内,这并不只是效率得到了提高,更是对安全防线进行了故障回顾,检查变成了“毫秒级事前预警。
制造领域的“数字孪生”:比亚迪与中国航天的产线革命
对于比亚迪和中国航天而言,每条产线上的数万个传感器每秒都在产生海量数据。
市场需求:制造业急需解决的是“写得进去,查不出来”的僵尸数据问题。
DolphinDB可以支撑日均86.4亿条数据的写入以及实时分析,进而实现产线状态的实时数字孪生,这便是解决方案,查询和写入的延迟都被压缩到了毫秒级,为预测性维护提供了稳定的数据基础。
未来图景:从“数据库”到“时序智能生态”
DolphinDB不只是满足于存储数据,它正在积极规划下一代技术升级,打算构建覆盖全场景的时序智能生态。
技术路线图:云原生与AI的深度融合
-
云原生进化(CloudNative): DolphinDB正加速向Serverless架构演进,利用Kubernetes实现计算资源的弹性伸缩,真正做到“用完即走,按需付费”,进一步降低企业TCO(总拥有成本)。
-
AI算子库的整合: 打算深入地把PyTorch和TensorFlow的生态体系,进行融合,在数据库里面直接支持张量计算(TensorComputing),让数据库直接变成AI推理引擎,实现“数据不流出数据库,模型可以运转起来。
市场拓荒:千亿赛道的星辰大海
-
车联网(IoV): 随着自动驾驶迈向L4级别,车端产生的数据呈爆炸式增长。DolphinDB正布局车云一体化数据方案,处理激光雷达与CAN总线的高频时序数据。
-
数字能源: 在虚拟电厂和储能调峰领域,DolphinDB致力于解决源网荷储的实时平衡计算问题,这将是一个万亿级的蓝海市场。
结语:国产软件的“领跑”启示录
全球前十,有DolphinDB的一个位置,不单单是一个企业获得了成功,更是国产基础软件从跟随者转成领跑者的一个体现。
它给行业带来的启发是,真正的国产替代,不能依赖情怀或保护,而是要凭借技术实力实现降维打击,从底层存储引擎的重新构建,到计算架构的深度融合创新,再到对国产CPU的全面适配,DolphinDB表明,只要痛点抓得准、产品性能做到极致,国际市场自然会打开大门。
在2025年这个时间节点上,我们看到的不仅仅是一个数据库的崛起,而是中国科技在关键赛道上,正在一个个拿回定义权。
未来已来,唯快不破。
(声明,这篇文章是依据真实的技术参数,以及市场表现来撰写的,其中部分具有前瞻性的内容是,根据2025年的行业趋势来推断的,它的目的,是传递国产技术取得突破的积极价值,)
971

被折叠的 条评论
为什么被折叠?



