思路
保证思路的有序性。
如果拿出来每一条边与其他边进行比较,那么一定可以得出答案。
但是一条边[l,r]只能和与它有交集的边产生可能。那么进行排序,按照左端点,在某条边的l大于当前选择的边的r时break。
能否在O(n)的算法处理呢?
也就是说,枚举的区间是有选择性的。
假设当前选定的区间是A。
那么之后的区间有ECDE四种情况,再加上 无交集的情况。
1.如果是B,C,E,那么还是以A去扫描后面的区间,因为A是覆盖B,C,E
2.如果是E,那么E之后的区间的左端点都是大于L5,此时选定的区间应该从A转移到E
#include <bits/stdc++.h>
using namespace std;
struct node {
int left;
int right;
node(int l,int r) {
left = l;right = r;
}
};
vector<node> vec;
bool cmp(node a,node b) {
if ( a.left!=b.left ) return a.left<b.left;
else return a.right>b.right;
}
int main()
{
int n;
cin>>n;
for ( int i=0;i<n;i++ ) {
int a,b;
scanf("%d%d",&a,&b);
vec.push_back( node(a,b) );
}
sort( vec.begin(),vec.end(),cmp ) ;
int p = 0 ;
int l=vec[p].left,r=vec[p].right;
p++;
int len = 0;
while ( p<vec.size() ) {
if ( vec[p].right <= r ) {
len = max( len,vec[p].right-vec[p].left ) ;
} else {
len = max( len,r-vec[p].left ) ;
r = vec[p].right;
l = vec[p].right;
}
p++;
}
cout<<len<<endl;
return 0;
}