两点之间最短路径:弗洛伊德算法

弗洛伊德算法是计算无向有权图中两点间最短路径的算法,复杂度为O(n^3)。其思路是将两点间距离分为过(指定的)第三点或是不过,然后取它们的最小值,如此循环就可以得到两点之间真正的最小值。

void floyd()
{
    for (int k = 0; k < n; ++k)
    {
        for (int i = 0; i < n; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                //在当前i到j经过k点的路径与直连的路径中选最短
                matrix[i][j] = min(matrix[i][j], matrix[i][k] + matrix[k][j]);
            }
        }
    }
}

其中,matrix为有n个点的图的邻接矩阵,若两点没有直连路径则设相应的值为MAX。执行函数后的矩阵的对应项即为两点最短距离

转载于:https://www.cnblogs.com/Algorithm-X/p/7219784.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值