目录
文章地址
paper:WACV 2023 Open Access Repository (thecvf.com)
创新点
1、多对比度信息共享
与以往的初始零填充混叠图像重建不同,作者将不同于重建加权方式的全采样的k空间嫁接到欠采样的为获取的k空间部分,给重建网络提供一个去混叠和正确解剖结构的起点。此后,作者还将参考的图像与输入图像concat进入图像重建网络。
2、对于MRI重建的vision transformer
提出了一种高保真MRI重建的Deep Conditional Cascade Transformer,开发了一种基于Swin transformer的SwinRN重建网络,用于DCCT的骨干。
3、双域自监督学习
使用图像域和k空间域的自监督学习,兼顾图像域和k空间域的损失回传。
优缺点
优点:多对比度MRI图像具有相同的解剖结构,这样间隙填充对比零填充可以有正确的解剖结构、更少的伪影,作为网络重建的输入,可以使网络更专注于对比度转换而不是消除锯齿伪影。
缺点:需要已知指导图像全采样数据。
文章架构

一、Deep Conditional Cascade Transformer
1.Deep MC-MRI Conditioning:
对于MC-MRI Conditioning,作者使用了两个调节方法:KF(间隙填充)和CC(通道合并)。
对于KF,虽然多对比MRI描绘成像组织的不同生理特性,导致图像各部分对比度不同,但多对比度MRI图像具有相同的解剖结构。这样间隙填充对比零填充可以有正确的解剖结构、更少的伪影,作为网络重建的输入,可以使网络更专注于对比度转换而不是消除锯齿伪影等。作者列出了一个具体的例子如图下所示(左一为PD加权全采样参考图像,左二为T2加权零填充图像,左三为T2加权参考图像间隙填充图像,左四为T2加权全采样图像):
对于CC,作者将参考图像和间隙填充后的图像通道合并,作为SwinRN的输入。
对于KF和CC 两种调节方法的重要性,后续消融实验给出结论。
2.Swin Transformer Reconstruction Network

SwinRN作为DCCT的主架构,该网络的流程图可以用以下公式代表:
其中,PIFE,PDFE,PIR为3x3卷积。后续Swin Transformer架构部分不在此做过多描述。
二、Dual-Domain Self-Supervised Learning
为了以自监督方式训练DCCT,作者使用了图像域和k空间域双域的自监督模式。在training中,欠采样的ytag经过两个互不重叠的M1和M2两个mask(M1+M2=Mtag,Mtag是欠采样的mask)得到yp1和yp2两路并行的初始。(训练时,M1 M2在[0.2,0.8]之间)
后经过DCCT后产生Xp1和Xp2,
此时Xp1与Xp2之间做外观一致性loss,经FFT后交叉使用M1或M2后,回传产生频率域数据一致性loss。双域loss分配权重后相加得到该自监督网络的损失函数。
外观一致性损失(v,h分别为垂直和水平梯度运算符):
数据一致性损失:
其中,。
实验细节
数据集:IXI的T2加权与PD加权磁共振图像。共11808张,8376张用于训练,1080张用于验证,2352张用于测试。https://brain-development.org/ixi-dataset/, CC BY-SA 3.0 license
显卡: NVIDIA Quadro RTX 8000 GPU with 48GB memory
学习率:0.0004
batach_size:3
Number(SwinRN,SwinTB,SwinTL) = 3,4,4
实验结果
下图中,粗体方法为监督训练,下划线方法为自监督训练。
Target:T2w I Reference:PD 代表T2加权为欠采样图像,PD加权为参考图像进行训练以及测试。
消融实验
一、双域自监督
二、深度MC-MRI调节及 监督DAFormer vs. 自监督DAFormer
三、级联SwinRN数量的影响
--------------------------------------------------------------------------------------------
本文章作者未公布源码。
如有理解错误之处欢迎指正。