DSFormer: A Dual-domain Self-supervised Transformer for acc Multi-contrast MRI Re---文章阅读记录

目录

文章地址

创新点

优缺点

文章架构

实验细节

实验结果

消融实验 


文章地址

paper:WACV 2023 Open Access Repository (thecvf.com)

创新点

1、多对比度信息共享

与以往的初始零填充混叠图像重建不同,作者将不同于重建加权方式的全采样的k空间嫁接到欠采样的为获取的k空间部分,给重建网络提供一个去混叠和正确解剖结构的起点。此后,作者还将参考的图像与输入图像concat进入图像重建网络。

2、对于MRI重建的vision transformer

提出了一种高保真MRI重建的Deep Conditional Cascade Transformer,开发了一种基于Swin transformer的SwinRN重建网络,用于DCCT的骨干。

3、双域自监督学习

使用图像域和k空间域的自监督学习,兼顾图像域和k空间域的损失回传。

优缺点

优点:多对比度MRI图像具有相同的解剖结构,这样间隙填充对比零填充可以有正确的解剖结构、更少的伪影,作为网络重建的输入,可以使网络更专注于对比度转换而不是消除锯齿伪影。

缺点:需要已知指导图像全采样数据。

文章架构

the Dual-domain Self-supervised TransFormer (DSFormer)

一、Deep Conditional Cascade Transformer

1.Deep MC-MRI Conditioning:

对于MC-MRI Conditioning,作者使用了两个调节方法:KF(间隙填充)和CC(通道合并)。

对于KF,虽然多对比MRI描绘成像组织的不同生理特性,导致图像各部分对比度不同,但多对比度MRI图像具有相同的解剖结构。这样间隙填充对比零填充可以有正确的解剖结构、更少的伪影,作为网络重建的输入,可以使网络更专注于对比度转换而不是消除锯齿伪影等。作者列出了一个具体的例子如图下所示(左一为PD加权全采样参考图像,左二为T2加权零填充图像,左三为T2加权参考图像间隙填充图像,左四为T2加权全采样图像):

 

对于CC,作者将参考图像和间隙填充后的图像通道合并,作为SwinRN的输入。

对于KF和CC 两种调节方法的重要性,后续消融实验给出结论。

2.Swin Transformer Reconstruction Network

Swin Transformer Reconstruction Network (SwinRN)

 

SwinRN作为DCCT的主架构,该网络的流程图可以用以下公式代表:

F_{0} = P_{IFE}(Xinit|Xref )

F_{n} = P_{SwinTBn}(F_{n-1})

F_{DF E} = P_{DF E}(F_{n})

X_{output} = P_{IR} (F_{DFE} + F_{IFE})

其中,PIFE,PDFE,PIR为3x3卷积。后续Swin Transformer架构部分不在此做过多描述。

二、Dual-Domain Self-Supervised Learning

为了以自监督方式训练DCCT,作者使用了图像域和k空间域双域的自监督模式。在training中,欠采样的ytag经过两个互不重叠的M1和M2两个mask(M1+M2=Mtag,Mtag是欠采样的mask)得到yp1和yp2两路并行的初始。(训练时,M1 M2在[0.2,0.8]之间)

y_{p1} = y_{tag}\odot M_{1}

y_{p2} = y_{tag}\odot M_{2}

后经过DCCT后产生Xp1和Xp2,

X_{p1} = f_{dcct}(y_{p1},y_{ref})

X_{p2} = f_{dcct}(y_{p2},y_{ref})

此时Xp1与Xp2之间做外观一致性loss,经FFT后交叉使用M1或M2后,回传产生频率域数据一致性loss。双域loss分配权重后相加得到该自监督网络的损失函数。

外观一致性损失(v,h分别为垂直和水平梯度运算符):

\mathcal {L}_{AC} = \lambda _{1} \mathcal {L}_{img} + \lambda _{2} \mathcal {L}_{grad}

\mathcal {L}_{img} = ||X_{p_1} - X_{p_2}||_1

\mathcal {L}_{grad} = ||\nabla _v X_{p_1} - \nabla _v X_{p_2}||_1 + ||\nabla _h X_{p_1} - \nabla _h X_{p_2}||_1

数据一致性损失:

y_{2 \rightarrow 1} = \mathcal {F} (X_{p_2}) \odot M_1

y_{1 \rightarrow 2} = \mathcal {F} (X_{p_1}) \odot M_2

\mathcal {L}_{PDC} = ||y_{2 \rightarrow 1} - y_{p_1}||_1 + ||y_{1 \rightarrow 2} - y_{p_2}||_1

\mathcal {L}_{tot} = \mathcal {L}_{AC} + \lambda _{3} \mathcal {L}_{PDC}

其中,\lambda 1=1,\lambda 2=0.1,\lambda 3=0.1

实验细节

数据集:IXI的T2加权与PD加权磁共振图像。共11808张,8376张用于训练,1080张用于验证,2352张用于测试。https://brain-development.org/ixi-dataset/, CC BY-SA 3.0 license

显卡: NVIDIA Quadro RTX 8000 GPU with 48GB memory

学习率:0.0004

batach_size:3

Number(SwinRN,SwinTB,SwinTL  =  3,4,4

实验结果

下图中,粗体方法为监督训练,下划线方法为自监督训练。

 Target:T2w I Reference:PD   代表T2加权为欠采样图像,PD加权为参考图像进行训练以及测试。

消融实验 

一、双域自监督

 二、深度MC-MRI调节及 监督DAFormer vs. 自监督DAFormer

 三、级联SwinRN数量的影响

--------------------------------------------------------------------------------------------

本文章作者未公布源码。

如有理解错误之处欢迎指正。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值