题目描述:
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
注意:
可以认为区间的终点总是大于它的起点。
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
示例 1:
输入: [ [1,2], [2,3], [3,4], [1,3] ]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。
示例 2:
输入: [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
示例 3:
输入: [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
来源:力扣(LeetCode)
思路:
我们的思路是去求解 互不相交的区间的个数,然后取反就是我们所求的移除区间个数。
而对与 互不相交的区间,我们考虑对区间 按区间的end进行排序,然后把所有与该区间相交的区间删除,这样循环一遍已经排序好的区间。剩下的就是互不相交的区间,个数最多。
//先求出互不相交的区间然后用总区间数减去即为所求
class Solution {
public:
static bool myfunc(vector<int>& a, vector<int> &b){
if(a[1] < b[1]) return true;
else if(a[1] == b[1] && a[0]>b[0]) return true;
return false;
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if(intervals.size() == 0) return 0;
//按end的大小排序
sort(intervals.begin(), intervals.end(), myfunc);
int cnt = 1; // 至少有一个区间不相交
int t_end = intervals[0][1];
for(vector<int> inter_t : intervals)
{
int start = inter_t[0];//遍历中的区间的初始位置
if(start >= t_end){//不相交,判断下一个
cnt++;
t_end = inter_t[1];
}
}
return intervals.size()-cnt;
}
};