回报率与正态分布

这篇博客探讨了正态分布在财务分析中的应用,包括计算回报率、均值和标准差,以及缩放收益。通过纳斯达克历史数据,展示了如何计算和标准化回报率,强调缩放收益在评估投资效率中的作用。此外,讨论了分箱技术在数据简化和可视化中的重要性,同时提及了回报率随机性的假设及其在金融理论中的应用。
摘要由CSDN通过智能技术生成

正态分布

正态分布是一种连续型概率分布,也被称为高斯分布或钟形曲线分布。它被广泛应用于统计学和自然科学中,如在财务分析、生物学、物理学、心理学和社会科学等领域中。

正态分布的特点是具有单峰性,即它的概率密度函数具有一个峰值,而且峰值对称地位于均值的左右两侧。它还具有标准差和方差的特征,这些特征可以用来测量数据的分散程度。正态分布的形状可以通过均值和标准差来调整。

正态分布的概率密度函数是:

f ( x ∣ μ , σ 2 ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x | \mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(xμ,σ2)=σ2π 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值