正态分布
正态分布是一种连续型概率分布,也被称为高斯分布或钟形曲线分布。它被广泛应用于统计学和自然科学中,如在财务分析、生物学、物理学、心理学和社会科学等领域中。
正态分布的特点是具有单峰性,即它的概率密度函数具有一个峰值,而且峰值对称地位于均值的左右两侧。它还具有标准差和方差的特征,这些特征可以用来测量数据的分散程度。正态分布的形状可以通过均值和标准差来调整。
正态分布的概率密度函数是:
f ( x ∣ μ , σ 2 ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x | \mu,\sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x∣μ,σ2)=σ2π1