【CUDA driver initialization failed, you might not have a CUDA gpu】pytorch 解决方案

当遇到CUDA driver initialization failed错误时,通常是由于GPU计算能力不足或CUDA版本不兼容导致。解决方案包括检查GPU的compute capability和更新CUDA版本,或者降低PyTorch版本以匹配GPU的CUDA支持。
摘要由CSDN通过智能技术生成

问题描述

在coding的时候我们经常在指定device的时候用这么一句代码:

device = 'cuda' if torch.cuda.is_available() else 'cpu'

但是有时候我们会发现device确实是放在了cpu上面,所以为了明确出错的原因,我们在shell里先import了torch,再执行torch.cuda.is_available(),发现在返回False结果之前给出了错误原因,其中部分内容就是我们在标题中写的。

问题原因

这种情况一般来说有两种原因

  1. gpu的计算能力过差
    pytorch慢慢已经不支持cc(compute capability)小于3的gpu了,所以可以先查看一下自己的gpu的cc大小。但总的来说,这种情况出现的几率不大。
  2. cuda版本不兼容
    这种情况通常是因为conda的虚拟环境中install的cudatoolk
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值