Cesaro和
已有一个数列 { c n } , c n ∈ C \{c_n\},c_n \in \mathbb{C} { cn},cn∈C,在这个意义下我们可以定义部分和数列 { s n = c 1 + c 2 + ⋯ + c n } \{s_n=c_1 + c_2 + \cdots + c_n\} { sn=c1+c2+⋯+cn},显然这个数列的第n项是原有数列前n项的和。而cesaro和是在这个部分和数列上定义的: { σ n = s 1 + s 2 + ⋯ + s n n } \{\sigma_n=\frac{s_1 + s_2 + \cdots + s_n}{n}\} { σn=ns1+s2+⋯+sn},即这个cesaro和序列的每一项都是部分和序列前n项的均值。
cesaro可和
一个数列 c n c_n cn被称为是cesaro可和的(cesaro summable),若 lim n → ∞ σ n = σ \lim_{n\rightarrow \infty}\sigma_n = \sigma limn→∞σn=σ收敛。我们在后面可以证明,cesaro收敛是比平常意义下的级数收敛更广泛的一种收敛形式。即若一个数列的级数收敛,那么他一定是cesaro收敛的,进一步的,可以证明二者收敛到一个极限,反向不成立。用数学语言表述是这样的:
∀ { c n ∈ C } , 若 lim n → ∞ s n = s 收敛,那么 lim n → ∞ σ n = s 同样收敛到 s 。 \forall \{c_n \in \mathbb{C} \}, 若\lim_{n \rightarrow \infty}s_n=s收敛,那么\lim_{n\rightarrow \infty}\sigma_n=s同样收敛到s。 ∀{
cn∈C},若n→∞limsn=s收敛,那么n→∞limσn=s同样收敛到s。
这个证明其实并不难,整体的证明思路是 ∀ ϵ > 0 , ∣ σ n − s ∣ < ϵ \forall \epsilon > 0, |\sigma_n - s| < \epsilon ∀ϵ>0,∣σn−s∣<ϵ,从而证明二者相等,具体而言:
Proof:
∀ ϵ > 0 , ∃ N ∈ N , ∀ n > N , ∣ s n − s ∣ < ϵ . \forall \epsilon > 0, \exist N \in \mathbb{N}, \forall n > N, |s_n - s| < \epsilon. ∀ϵ>0,∃N∈N,∀n>N,∣sn−s∣<ϵ.
σ n = ∑ i = 1 n s i / n = ∑ i = 1 N − 1 s i / n + ∑ i = N n s i / n \sigma_n = \sum_{i=1}^ns_i / n = \sum_{i=1}^{N-1}s_i / n + \sum_{i=N}^ns_i / n σn=i=1∑nsi/n=i=1∑N−1si/n+i=N∑nsi/n
把他拆成两部分,cesaro这种均值形式的,有限项是没有意义的。
整体把 σ n \sigma_n σn减掉s:
σ n − s = ∑ i = 1 N − 1 s i − s n + ∑ i = N n s i − s n \sigma_n-s=\sum_{i=1}^{N-1}\frac{s_i-s}{n} + \sum_{i=N}^n\frac{s_i-s}{n} σn−s=i=1∑N−1nsi−s+i=N∑nnsi−s
对于第二部分,我们有如下变换:
∑ i = N n s i n − s ≤ ∣ ∑ i = N n s i − s n ∣ ≤ ∑ i = N n ∣ s i − s ∣ n ≤ ϵ n − N + 1 n ≤ ϵ \sum_{i=N}^n\frac{s_i}{n} - s \leq|\sum_{i=N}^n \frac{s_i-s}{n}| \leq \sum_{i=N}^n\frac{|s_i-s|}{n} \leq \epsilon\frac{n-N+1}{n} \leq \epsilon i=N∑nnsi−s≤∣i=N∑nnsi−s∣≤i=N∑nn∣si−s∣≤ϵnn−N+1≤ϵ
再令n趋于无穷,我们有如下结果:
lim n → ∞ σ n − s ≤ lim n → ∞