级数收敛、cesaro可和以及Abel可和的关系

本文详细介绍了Cesaro和与Abel和的概念,阐述了它们之间的关系以及级数收敛性的不同层面。Cesaro可和性是级数普通收敛的推广,而Abel可和性进一步扩展了这一理论。文章通过引理和推论证明了几个关键的收敛关系,并探讨了这些理论在傅立叶分析中的应用,特别是对于傅立叶展开的收敛性和一致收敛性问题的解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cesaro和

已有一个数列 { c n } , c n ∈ C \{c_n\},c_n \in \mathbb{C} { cn},cnC,在这个意义下我们可以定义部分和数列 { s n = c 1 + c 2 + ⋯ + c n } \{s_n=c_1 + c_2 + \cdots + c_n\} { sn=c1+c2++cn},显然这个数列的第n项是原有数列前n项的和。而cesaro和是在这个部分和数列上定义的: { σ n = s 1 + s 2 + ⋯ + s n n } \{\sigma_n=\frac{s_1 + s_2 + \cdots + s_n}{n}\} { σn=ns1+s2++sn},即这个cesaro和序列的每一项都是部分和序列前n项的均值。

cesaro可和

一个数列 c n c_n cn被称为是cesaro可和的(cesaro summable),若 lim ⁡ n → ∞ σ n = σ \lim_{n\rightarrow \infty}\sigma_n = \sigma limnσn=σ收敛。我们在后面可以证明,cesaro收敛是比平常意义下的级数收敛更广泛的一种收敛形式。即若一个数列的级数收敛,那么他一定是cesaro收敛的,进一步的,可以证明二者收敛到一个极限,反向不成立。用数学语言表述是这样的:

∀ { c n ∈ C } , 若 lim ⁡ n → ∞ s n = s 收敛,那么 lim ⁡ n → ∞ σ n = s 同样收敛到 s 。 \forall \{c_n \in \mathbb{C} \}, 若\lim_{n \rightarrow \infty}s_n=s收敛,那么\lim_{n\rightarrow \infty}\sigma_n=s同样收敛到s。 { cnC},nlimsn=s收敛,那么nlimσn=s同样收敛到s
这个证明其实并不难,整体的证明思路是 ∀ ϵ > 0 , ∣ σ n − s ∣ < ϵ \forall \epsilon > 0, |\sigma_n - s| < \epsilon ϵ>0,σns<ϵ,从而证明二者相等,具体而言:
Proof:
∀ ϵ > 0 , ∃ N ∈ N , ∀ n > N , ∣ s n − s ∣ < ϵ . \forall \epsilon > 0, \exist N \in \mathbb{N}, \forall n > N, |s_n - s| < \epsilon. ϵ>0,NN,n>N,sns<ϵ.

σ n = ∑ i = 1 n s i / n = ∑ i = 1 N − 1 s i / n + ∑ i = N n s i / n \sigma_n = \sum_{i=1}^ns_i / n = \sum_{i=1}^{N-1}s_i / n + \sum_{i=N}^ns_i / n σn=i=1nsi/n=i=1N1si/n+i=Nnsi/n
把他拆成两部分,cesaro这种均值形式的,有限项是没有意义的。
整体把 σ n \sigma_n σn减掉s:
σ n − s = ∑ i = 1 N − 1 s i − s n + ∑ i = N n s i − s n \sigma_n-s=\sum_{i=1}^{N-1}\frac{s_i-s}{n} + \sum_{i=N}^n\frac{s_i-s}{n} σns=i=1N1nsis+i=Nnnsis
对于第二部分,我们有如下变换:
∑ i = N n s i n − s ≤ ∣ ∑ i = N n s i − s n ∣ ≤ ∑ i = N n ∣ s i − s ∣ n ≤ ϵ n − N + 1 n ≤ ϵ \sum_{i=N}^n\frac{s_i}{n} - s \leq|\sum_{i=N}^n \frac{s_i-s}{n}| \leq \sum_{i=N}^n\frac{|s_i-s|}{n} \leq \epsilon\frac{n-N+1}{n} \leq \epsilon i=Nnnsisi=Nnnsisi=NnnsisϵnnN+1ϵ
再令n趋于无穷,我们有如下结果:
lim ⁡ n → ∞ σ n − s ≤ lim ⁡ n → ∞

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值