【问题描述】
在A国有n个城市,编号1到n,这些城市由若干条单行道路相连。小沐是一个旅行家,他想在他有生之年,到尽可能多的城市去旅游。
小沐总是从他的家乡——1号城市出发,最后再回到1号城市。他想经过尽可能多的城市,小沐可以经过一个城市多次。因为城市间是单行道连接,这给小沐的旅行带来了很大的不便,因此,小沐想偷偷逆向行走一次,但最多只能有一次逆行。
问,小沐最多能经过多少个不同的城市。
【输入格式】
输入的第一行包含两个整数n和m,表示A国的城市数目和道路数量。接下来的m行,表示m条单向道路,每条道路连接城市u和v,表示从u出发到达v。
【输出格式】
仅输出一个整数,表示所求答案。
【输入样例】
7 10
1 2
3 1
2 5
2 4
3 7
3 5
3 6
6 5
7 2
4 7
【输出样例】
6
【样例解释】
小沐行走线路是1, 2, 4, 7, 2, 5, 3, 1 ,在5到3的时候逆行了一次。
【数据范围】
1<=N,M<=100000
思路
很显然的强连通分量。某大佬给我说这道题自己想出来的话强连通分量缩点基本没问题了。其实可以算套路题,缩点后即为DAG图,唯一的难点在于他会逆向走一次。这时候会发现如果反向走回到1就会形成一个环,于是DAG上的动态规划就转化为了两个,正向图和反向图上的
代码如下
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cctype>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
#define maxn 100005
#define maxm 100005
typedef long long LL;
int first[maxn],np=0,belong[maxn],dfn[maxn],low[maxn],DFS_clock=0,scc;
int stk[maxn],top=0,n,m,dist1[maxn],dist2[maxn],sz[maxn],rd1[maxn],rd2[maxn];
bool vis[maxn];
vector<int>g1[maxn],g2[maxn];
const int inf=3e8;
struct edge
{
int to,next;
}e[maxm<<1];
void addedge(int u,int v)
{
e[++np]=(edge){v,first[u]};
first[u]=np;
}
void init()
{
int u,v;
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
}
void tarjan(int i)
{
vis[i]=1;
low[i]=dfn[i]=++DFS_clock;
stk[++top]=i;
for (int p=first[i];p;p=e[p].next)
{
int j=e[p].to;
if (vis[j])
{
if (!belong[j])
low[i]=min(low[i],dfn[j]);
continue;
}
tarjan(j);
low[i]=min(low[i],low[j]);
}
if (low[i]==dfn[i])
{
scc++;
while(1)
{
int x=stk[top--];
belong[x]=scc;
sz[scc]++;
if (x==i)
break;
}
}
}
void find_scc()
{
memset(vis,0,sizeof(vis));
memset(belong,0,sizeof(belong));
for (int i=1;i<=n;i++)
if (!vis[i])
tarjan(i);
}
void suodian()
{
find_scc();
for (int i=1;i<=n;i++)
for (int p=first[i];p;p=e[p].next)
{
int j=e[p].to;
if (belong[i]!=belong[j])
{
g1[belong[i]].push_back(belong[j]);
rd1[belong[j]]++;
g2[belong[j]].push_back(belong[i]);
rd2[belong[i]]++;
}
}
}
int dp1(int i)
{
if (dist1[i]!=-1)
return dist1[i];
int t;
if (i==belong[1])
t=0;
else
t=-inf;
for (int k=0;k<g1[i].size();k++)
{
int j=g1[i][k];
t=max(t,dp1(j));
}
dist1[i]=t+sz[i];
return dist1[i];
}
int dp2(int i)
{
if (dist2[i]!=-1)
return dist2[i];
int t;
if (i==belong[1])
t=0;
else
t=-inf;
for (int k=0;k<g2[i].size();k++)
{
int j=g2[i][k];
t=max(t,dp2(j));
}
dist2[i]=t+sz[i];
return dist2[i];
}
void solve()
{
int ans=0;
suodian();
memset(dist1,-1,sizeof(dist1));
memset(dist2,-1,sizeof(dist2));
for (int i=1;i<=scc;i++)
if (rd1[i]==0&&dist1[i]==-1)
dp1(i);
for (int i=1;i<=scc;i++)
if (rd2[i]==0&&dist2[i]==-1)
dp2(i);
for (int i=1;i<=scc;i++)
for (int k=0;k<g1[i].size();k++)
{
int j=g1[i][k];
ans=max(ans,dist1[i]+dist2[j]-sz[belong[1]]);
}
printf("%d",ans);
}
int main()
{
//freopen("in.txt","r",stdin);
init();
solve();
return 0;
}