1.线性表:是由n(n≥0)个数据元素组成的有限序列。
2.线性表的基本运算有:
1)InitList(L),构造空表,即表的初始化;
2)ListLength(L),求表的结点个数,即表长;
3)GetNode(L,i),取表中第i个结点,要求1≤i≤ListLength(L);
4)LocateNode(L,x)查找L中值为x的结点并返回结点在L中的位置,有多个x则返回首个,没有则返回特殊 值表示查找失败。
5)InsertList(L,x,i)在表的第i个位置插入值为x的新结点,要求1≤i≤ListLength(L)+1;
6)DeleteList(L,i)删除表的第i个位置的结点,要求1≤i≤ListLength(L);
3.顺序表:把线性表的结点按逻辑次序存放在一组地址连续的存储单元里。
4.顺序表结点的存储地址计算公式:Loc(ai)=Loc(a1)+(i-1)*C;1≤i≤n
5.顺序表上的基本运算
(1)插入
<pre name="code" class="cpp"><pre name="code" class="cpp">Status ListInsert_Sq(SqList &L, int i, ElemType e){
if (i<1 || i>L.length + 1) return ERROR; //i值不合法
if (L.length == MAXSIZE) return ERROR;
//当前存储空间已满
for (j = L.length - 1; j >= i - 1; j--)
L.elem[j + 1] = L.elem[j]; //插入位置及之后的元素后移
L.elem[i - 1] = e; //将新元素e放入第i个位置
++L.length; //表长增1
return OK;
}
在顺序表上插入要移动表的n/2结点,算法的平均时间复杂度为O(n)。
(2)删除
<pre name="code" class="cpp"><pre name="code" class="cpp">Status ListDelete_Sq(SqList &L,int i,ElemType &e){
if((i<1)||(i>L.length)) return ERROR; //i值不合法
e=L.elem[i-1]; //将欲删除的元素保留在e中
for (j=i;j<=L.length-1;j++)
L.elem[j-1]=L.elem[j];
//被删除元素之后的元素前移
--L.length; //表长减1
return OK;
}
在顺序表上删除要移动表的(n+1)/2结点,算法的平均时间复杂度为O(n)。
6.单链表:只有一个链域的链表称单链表。
在结点中存储结点值和结点的后继结点的地址,data next data是数据域,next是指针域。
(1)建立单链表。时间复杂度为O(n)。
加头结点的优点:
1)链表第一个位置的操作无需特殊处理;
2)将空表和非空表的处理统一。
(2)查找运算。时间复杂度为O(n)。
1) 按序号查找。
<pre name="code" class="cpp">Status GetElem(LinkList &L, int i, ElemType &e){
p = L->next; j = 1; //初始化
while (p&&j<i){
//向后扫描,直到p指向第i个元素或p为空
p = p->next; ++j;
}
if (!p || j>i)return ERROR; //第i个元素不存在
e = p->data; //取第i个元素
return OK;
}
2) 按值查找。
LNode *LocateELem(LinkList &L,Elemtype e)
{
p = L->next;
while (p &&p->data != e)
p = p->next;
return p;
//返回L中值为e的数据元素的位置,查找失败返回NULL
}
(3)插入运算。时间复杂度为O(n)。
Status ListInsert_L(LinkList &L, int i, ElemType e){
p = L; j = 0;
while (p&&j<i−1){ p = p->next; ++j; }
//寻找第i−1个结点
if (!p || j>i−1)return ERROR;//i大于表长 + 1或者小于1
s = new LNode; //生成新结点s
s->data = e; //将结点s的数据域置为e
s->next = p->next; //将结点s插入L中
p->next = s;
return OK;
}//ListInsert_L
(4)删除运算。时间复杂度为O(n)。
Status ListDelete_L(LinkList &L, int i, ElemType &e){
p = L; j = 0;
while (p->next &&j<i - 1){
//寻找第i个结点,并令p指向其前驱
p = p->next; ++j;
}
if (!(p->next) || j>i - 1) return ERROR; //删除位置不合理
q = p->next; //临时保存被删结点的地址以备释放
p->next = q->next; //改变删除结点前驱结点的指针域
e = q->data; //保存删除结点的数据域
delete q; //释放删除结点的空间
return OK;
}//ListDelete_L
7.循环链表:是一种首尾相连的链表。特点是无需增加存储量,仅对表的链接方式修改使表的处理灵活方便。
8.空循环链表仅由一个自成循环的头结点表示。
9.很多时候表的操作是在表的首尾位置上进行,此时头指针表示的单循环链表就显的不够方便,改用尾指针 rear来表示单循环链表。
用头指针表示的单循环链表查找开始结点的时间是O(1),查找尾结点的时间是O(n);
用尾指针表示的单循环链表查找开始结点和尾结点的时间都是O(1)。
10.在结点中增加一个指针域,prior|data|next。形成的链表中有两条不同方向的链称为双链表。
1) 双链表的前插操作。时间复杂度为O(1)。
Status ListInsert_DuL(DuLinkList &L, int i, ElemType e){
if (!(p = GetElemP_DuL(L, i))) return ERROR;
s = new DuLNode;
s->data = e;
s->prior = p->prior;
p->prior->next = s;
s->next = p;
p->prior = s;
return OK;
}
2) 双链表的删除操作。时间复杂度为O(1)。
Status ListDelete_DuL(DuLinkList &L, int i, ElemType &e){
if (!(p = GetElemP_DuL(L, i)))
return ERROR;
e = p->data;
p->prior->next = p->next;
p->next->prior = p->prior;
delete p;
return OK;
}
11.顺序表和链表的比较
1)基于空间的考虑:顺序表的存储空间是静态分配的,链表的存储空间是动态分配的。顺序表的存储密度比链表大。因此,在线性表长度变化不大,易于事先确定时,宜采用顺序表作为存储结构。
2)基于时间的考虑:顺序表是随机存取结构,若线性表的操作主要是查找,很少有插入、删除操作时,宜用顺序表结构。对频繁进行插入、删除操作的线性表宜采用链表。若操作主要发生在表的首尾时采用尾指针表示的单循环链表。
12.存储密度=(结点数据本身所占的存储量)/(整个结点结构所占的存储总量)
存储密度:顺序表=1,链表<1。