今日记录:时间复杂度+空间复杂度

Java - 时间复杂度+空间复杂度

编程软件:IEDA

学习总结

  • 时间复杂度+空间复杂度是什么?
    算法效率分析分为两种:第一种是时间效率,第二种是空间效率。 时间效率被称为时间复杂度,而空间效率被称作空间复杂度。

  • 时间复杂度:算法中的基本操作的执行次数,为算法的时间复杂度。

  • 计算时间复杂度时,并不一定要计算精确的执行次数,而只需要大概执行次数,先找出循环次数较多的语句

  • 大O的渐进法表示时间复杂度:
  • 大O阶方法:
    1、用常数1取代运行时间中的所有加法常数。
    2、在修改后的运行次数函数中,只保留最高阶项。
    3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

☆下面看一段代码来理解大0渐进表示法:

// 请计算一下func1基本操作执行了多少次?
void func1(int N){
   int count = 0;
   for (int i = 0; i < N ; i++) {
       for (int j = 0; j < N ; j++) {
           count++;//循环次数多的语句:N*N次
       }
   }
   for (int k = 0; k < 2 * N ; k++) {
       count++;//循环次数多的语句:2N次
   }
   int M = 10;
  while ((M--) > 0) {
       count++;//循环次数多的语句:10次
   }
//func1的时间复杂度:N^2 + 2N + 10
//按照大O阶方法可知,func1时间复杂度为:O(N^2)

  • 空间复杂度:它是对一个算法在运行过程中临时占用存储空间大小的量度 。所以空间复杂度算的是变量的个数。
  • 空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

☆下面看一段代码来理解空间复杂度:

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
long[] fibArray = new long[n + 1];
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
  fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
return fibArray;
}

//动态开辟了N个空间,空间复杂度为 O(N)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值