Numpy线性代数-numpy.dot()

前言

N u m P y NumPy NumPy提供了线性代数函数库linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明。

函数内容
dot两数组的点积
vdot两向量的点积
inner两数组的内积
determinant数组的行列式
matmul两数组的矩阵积
inv求矩阵的逆
solve求解线性矩阵方程

相关函数介绍

numpy.dot()numpy.dot()

numpy.vdotnumpy.vdot()

numpy.inner()numpy.inner()

numpy.determinant()numpy.determinant()

numpy.matmul()numpy.matmul()

numpy.inv()numpy.inv()

numpy.solve()numpy.solve()

numpy.dot()

  • 对于两个数组(一维),计算的是这两个数组对应下标元素的乘积和(内积)
  • 对于二维数组,计算的是两个数组的矩阵乘积
  • 对于多维数组,结果数组中的每个元素都是:数组a的最后一维上的所有元素与数组b的倒数第二维上的所有元素的乘积和: d o t ( a , b ) [ i , j , k , m ] = s u m ( a [ i , j , : ] ∗ b [ k , : , m ] ) dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) dot(a,b)[i,j,k,m]=sum(a[i,j,:]b[k,:,m])

参数np.dot(a,b,out=None)

  • a,b:数组
  • out:可选,用于存储计算结果
import numpy as np
a=np.array([1,2,3,4])
b=np.array([1,2,3,4])
ans=np.dot(a,b)#1*1+2*2+3*3+4*4
print(ans)
30
a=np.array(([[1,2],[3,4]]))
b=np.array(([[1,2,3],[4,5,6]]))
ans=np.dot(a,b)#a.shape=(2,2),b.shape=(2,3),ans.shape(2,3) 即矩阵乘
print(ans)
[[ 9 12 15]
 [19 26 33]]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Phoenix_ZengHao

创作不易,能否打赏一瓶饮料?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值