基于Python的空间分布初步-学习笔记(一)

这篇博客介绍了Python在空间数据分析中的应用,包括空间数据的定义和分类,如栅格和矢量数据模型。文章深入探讨了空间数据可视化,特别是使用Folium库进行高德交通拥堵的案例分析。此外,还讲解了空间数据的拓扑表达——空间权重矩阵,以及空间自相关检验的方法,如Moran's l检验。最后,作者展望了空间数据的未来方向,如时空数据和空间模式识别。
摘要由CSDN通过智能技术生成

一、空间数据

(一)定义:空间数据与统计数据 Spatial data consists of geographic entities

(二)分类:栅格数据模型与矢量数据模型是地理信息系统中空间数据组织的两种最基本的方式。

    1. 栅栏数据(Vector Data):地图作为连续的平面,将其划成规则分布的格子,赋予每个格子不同的值,卫星地图、城市蔓延等常用。

    2. 矢量数据(Vector Data):点、线、面,建立坐标轴进行表示,格式:shapefile/geojson/DLG等。

二、空间数据可视化——模式探索

(一)相关性

    沃尔多·托布勒地理学第一定律—— All things related, but nearly things are more related than distant things.

    1. 正的空间自相关,邻居跟自己的颜色一样

    2. 类似于随机抽样,没有空间依赖性(自相关性)

    3. 负的空间自相关,周边邻居颜色都不一样

(二)Python地图可视化——相关库:Folium库

import folium


m = folium.Map(location=[31.232818,121.475183], zoom_start=12)
# lacation为中心点定位,zoom_start为地图比例尺大小
m


m = folium.Map(
    location=[31.232818,121.475183],
    zoom_start=12,
    tiles = 'http://webrd02.is.autonavi.com/appmaptile?lang=zh_cn&size=1&scale=1&style=7&x={x}&y={y}&z={z}',
    attr = 'default'
)
m


folium.Marker(
    location = [31.143207,121.423575],
    popup = "华东理工大学",
    icon = folium.Icon(color="red", icon="info-sign"),
).add_to(m)

m

 案例:高德交通拥堵的可视化数据探索性分析

(一)案例说明:使用高德交通大数据某城市的实时拥堵指数来发现模式

(二)基本步骤

    • 抓取某城市的拥堵数据以及地理信息

    • 组织地理信息构建geojson以及GeoDataFrame

    • 绘制可视化地图

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值