POJ1811 Prime Test (Pollard-Rho算法) Sunshine大神

很久没有写博客了。。。最近军训加开学,感觉刷题速度有降低,要补一补。


回归正题,正式进入数论阶段,讨论一下关于素数判定的那些事。

一类问题: 判定一个整数n(n>1)是否为素数。

算法1:

直接根据素数的定义枚举 i 2 (n1) ,如果n%i==0 n 为合数。
时间复杂度: O(n)

<code class="language-cpp hljs  has-numbering"><span class="hljs-keyword">bool</span> is_prime(<span class="hljs-keyword">int</span> n) {
    <span class="hljs-keyword">int</span> i;
    <span class="hljs-keyword">for</span>(i = <span class="hljs-number">2</span>; i < n; i++)
        <span class="hljs-keyword">if</span>(n % i == <span class="hljs-number">0</span>) <span class="hljs-keyword">return</span> <span class="hljs-keyword">false</span>;
    <span class="hljs-keyword">return</span> <span class="hljs-keyword">true</span>;
}</code><ul style="" class="pre-numbering"><li>1</li><li>2</li><li>3</li><li>4</li><li>5</li><li>6</li></ul>

算法2:

发现若存在 i<n 使得n%i==0,则必有n%(n/i)==0
所以只需枚举 i 2 sqrt(n) 即可。
时间复杂度: O(n)

<code class="language-cpp hljs  has-numbering"><span class="hljs-keyword">bool</span> is_prime(<span class="hljs-keyword">int</span> n) {
    <span class="hljs-keyword">int</span> i;
    <span class="hljs-keyword">for</span>(i = <span class="hljs-number">2</span>; i * i <= n; i++)
        <span class="hljs-keyword">if</span>(n % i == <span class="hljs-number">0</span>) <span class="hljs-keyword">return</span> <span class="hljs-keyword">false</span>;
    <span class="hljs-keyword">return</span> <span class="hljs-keyword">true</span>;</code><ul style="" class="pre-numbering"><li>1</li><li>2</li><li>3</li><li>4</li><li>5</li></ul>

Miller-Rabin算法:

这是一种随机性素数判定算法,也就是说,答案可能出错,但是可能性极小。

先是讲两个定理:

费马小定理:
对于一个质数 p ,取任意整数 a ,满足 gcd(p,a)=1 ,则有

ap11(modp)

二次探测定理:
对于 0<x<p ,若 p 是素数,则方程:

x21(modp)

的解为:
x1=1,x2=p1

因为费马小定理的逆命题不成立,而否逆命题成立,所以我们可以利用一下一点:
对于任意整数 a<p ,不满足 ap11(modp) ,则p为合数。

所以我们可以不断在区间 [2,p1] 范围内随机取a,并进行判定。在 s 次判定不为合数之后,我们就可以说这个数是质数。

但是这还不够精确,我们可以先把 p1 分解成 2t×u(u{x|x=2k+1,kN}) 的形式,然后令 x[0]=aumodp, ,那么将 x[0] 平方 t 次就是 (au)2tmodp 的值,我们设 x[i] x[0] 平方 i 次的值,根据二次探测定理,若 x[i] 等于1,则 x[i1] 等于1或p-1,不满足则 p 为合数。

注意以上操作中所有的形如 abmodp 的式子都要用快速幂运算,当n比较大时,形如 a×bmodp 的式子也要使用分治的思想来计算。

这就是Miller-Rabin算法的主要内容。

时间复杂度:考虑常数后为 O(slog3n)

代码如下:

<code class="hljs cpp has-numbering"><span class="hljs-keyword">const</span> <span class="hljs-keyword">int</span> MAXN = <span class="hljs-number">65</span>;
<span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> n, x[MAXN];

<span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> multi(<span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> a, <span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> b, <span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> p) {
    <span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> ans = <span class="hljs-number">0</span>;
    <span class="hljs-keyword">while</span>(b) {
        <span class="hljs-keyword">if</span>(b&<span class="hljs-number">1L</span>L) ans = (ans+a)%p;
        a = (a+a)%p;
        b >>= <span class="hljs-number">1</span>;
    }
    <span class="hljs-keyword">return</span> ans;
}

<span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> qpow(<span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> a, <span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> b, <span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> p) {
    <span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> ans = <span class="hljs-number">1</span>;
    <span class="hljs-keyword">while</span>(b) {
        <span class="hljs-keyword">if</span>(b&<span class="hljs-number">1L</span>L) ans = multi(ans, a, p);
        a = multi(a, a, p);
        b >>= <span class="hljs-number">1</span>;
    }
    <span class="hljs-keyword">return</span> ans;
}

<span class="hljs-keyword">bool</span> Miller_Rabin(<span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> n) {
    <span class="hljs-keyword">if</span>(n == <span class="hljs-number">2</span>) <span class="hljs-keyword">return</span> <span class="hljs-keyword">true</span>;
    <span class="hljs-keyword">int</span> s = <span class="hljs-number">20</span>, i, t = <span class="hljs-number">0</span>;
    <span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> u = n-<span class="hljs-number">1</span>;
    <span class="hljs-keyword">while</span>(!(u & <span class="hljs-number">1</span>)) {
        t++;
        u >>= <span class="hljs-number">1</span>;
    }
    <span class="hljs-keyword">while</span>(s--) {
        <span class="hljs-keyword">long</span> <span class="hljs-keyword">long</span> a = rand()%(n-<span class="hljs-number">2</span>)+<span class="hljs-number">2</span>;
        x[<span class="hljs-number">0</span>] = qpow(a, u, n);
        <span class="hljs-keyword">for</span>(i = <span class="hljs-number">1</span>; i <= t; i++) {
            x[i] = multi(x[i-<span class="hljs-number">1</span>], x[i-<span class="hljs-number">1</span>], n);
            <span class="hljs-keyword">if</span>(x[i] == <span class="hljs-number">1</span> && x[i-<span class="hljs-number">1</span>] != <span class="hljs-number">1</span> && x[i-<span class="hljs-number">1</span>] != n-<span class="hljs-number">1</span>) <span class="hljs-keyword">return</span> <span class="hljs-keyword">false</span>;
        }
        <span class="hljs-keyword">if</span>(x[t] != <span class="hljs-number">1</span>) <span class="hljs-keyword">return</span> <span class="hljs-keyword">false</span>;
    }
    <span class="hljs-keyword">return</span> <span class="hljs-keyword">true</span>;
}</code>
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值