Miller Robin素数测试与Pollcard Rho因数分解

<1>预备算法

LL mul(LL a, LL b, LL p)
{
     LL rn=0, i;
     for(i=1; i<=b; i<<=1,a=(a+a)%p)
	  if(b&i) rn=(rn+a)%p;
     return rn;
} // 计算模意义下两大数乘积
LL ksm(LL a, LL b, LL p)
{
     LL rn=1;
     for(; b; a=mul(a,a,p),b>>=1)
	  if(b&1) rn=mul(rn,a,p);
     return rn;
} // 计算模意义下两大数乘方
LL gcd(LL a, LL b) 
{ 
     LL tmp; if(a<b) tmp=a,a=b,b=tmp;
     while(b) tmp=a%b, a=b, b=tmp;
     return a;
} // 求最大公约数


<2>Miller Robin素数测试

能在(0.25)^S的错误率下判定质数,相应地需要付出(S*log n)的时间复杂度。

原理基于两个定理:

1.若p是质数,0<a<p,那么a^(p-1)≡1(mod p)。 可惜对于某些合数也成立,为此我们需要借助定理2

2.对于0<x<p,x^2≡1(mod p) 有且只有两解: x=1和x=p-1。 (关于这个的判定,可以在定理1的判定中做快速幂的时候顺便判下

基本思路:对于一切2以下的数和其他偶数,先特判掉。然后把(p-1)拆成k*2^j,先令x=(p-1)^k,对于2^j,我们一边平方x,一边利用定理2判定。最后用定理1检查一次。

bool isprime(LL n)
{
     if(n==2) return true;
     if(n<2 || !(n&1)) return false;
     LL a,x,y, u=n-1; int t=0;
     while((u&1)==0) t++, u>>=1;
     for(i=0; i<S; i++)
     {
	  a=rand()%(n-1)+1;
	  x=ksm(a,u,n);
	  for(int j=1; j<=t; j++)
	  {
	       y=mul(x,x,n);
	       if(y==1 && x!=1 && x!=n-1) return false;
	       x=y;
	  }
	  if(x!=1) return false;
     }
     return true;
}


<3>Pollcard Rho因数分解

复杂度貌似是n^(1/4),这应该是因数分解的最快算法了。

void rho(LL n)
{
  if(isprime(n)) { sta[++top]=n; return; }
  LL x,y,z,c,d; int i,j;
  for(;;)
  {
    x=rand()*rand()%(n-1)+1,
    c=rand()*rand()%(n-1)+1;
    for(y=x,i=j=2; ; i++)
    {
      x=(mul(x,x,n)+c)%n;
      z=x-y; if(z<0) z=-z;
      d=gcd(z,n);
      if(d>1 && d<n) { rho(d); rho(n/d); return; }
      if(x==y) break;
      if(i==j) y=x,j<<=1;
    }
  }
}



  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值