2019年蓝桥杯完全二叉树的权值

完全二叉树的权值

题目描述

给定一棵包含 N 个节点的完全二叉树,树上每个节点都有一个权值,按从 上到下、从左到右的顺序依次是 A1, A2, · · · AN,如下图所示:
在这里插入图片描述

现在小明要把相同深度的节点的权值加在一起,他想知道哪个深度的节点 权值之和最大?如果有多个深度的权值和同为最大,请你输出其中最小的深度。

注:根的深度是 1。

输入

第一行包含一个整数 N。 第二行包含N个整数A1,A2,··· AN。

对于所有评测用例,1≤ N ≤100000,−100000≤ Ai ≤100000。

输出

输出一个整数代表答案。

样例输入
7
1 6 5 4 3 2 1

样例输出
2

思路:

从头到尾一个一个加,每次加的结点数量到达二叉树每一深度的结点个数时,将结点个数归为0,二叉树下一深度的结点个数乘2,此时将更新每一层的最大值,注意最后还要比较一下计算的每一层的和与最大值相比较

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[100010];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1; i<=n; i++)
        scanf("%d",&a[i]);
    int s=0,num=0,j=1,h=0,maxx=-99999999,maxh=0;
    for(int i=1; i<=n; i++)
    {
        s=s+a[i];//每一层结点的和
        num++;//记录加过结点的数量,控制它等于二叉树每一层的结点数量
        if(num==j) 
        {
            h++; //深度+1
            num=0; //从下一深度重新开始计数
            j=j*2; //下一深度的结点数量变为当前深度结点数量的2倍
            if(s>maxx) //更新每一层结点和的最大值
            {
                maxx=s;
                maxh=h;
            }
            s=0;//下一层计算和依然从0开始
        }

    }
    if(s>maxx)
       maxh=h+1; //举个例子吧,当第三层的和此时为最大值,第四层的和小于第三层,不进入更新最大值,但此时第五层的结点和大于第四层但是第五层的结点没有满(不是满二叉树),需要在最后深度+1
    printf("%d\n",maxh);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值