完全二叉树的权值
题目描述
给定一棵包含 N 个节点的完全二叉树,树上每个节点都有一个权值,按从 上到下、从左到右的顺序依次是 A1, A2, · · · AN,如下图所示:
现在小明要把相同深度的节点的权值加在一起,他想知道哪个深度的节点 权值之和最大?如果有多个深度的权值和同为最大,请你输出其中最小的深度。
注:根的深度是 1。
输入
第一行包含一个整数 N。 第二行包含N个整数A1,A2,··· AN。
对于所有评测用例,1≤ N ≤100000,−100000≤ Ai ≤100000。
输出
输出一个整数代表答案。
样例输入
7
1 6 5 4 3 2 1
样例输出
2
思路:
从头到尾一个一个加,每次加的结点数量到达二叉树每一深度的结点个数时,将结点个数归为0,二叉树下一深度的结点个数乘2,此时将更新每一层的最大值,注意最后还要比较一下计算的每一层的和与最大值相比较
代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[100010];
int main()
{
int n;
scanf("%d",&n);
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
int s=0,num=0,j=1,h=0,maxx=-99999999,maxh=0;
for(int i=1; i<=n; i++)
{
s=s+a[i];//每一层结点的和
num++;//记录加过结点的数量,控制它等于二叉树每一层的结点数量
if(num==j)
{
h++; //深度+1
num=0; //从下一深度重新开始计数
j=j*2; //下一深度的结点数量变为当前深度结点数量的2倍
if(s>maxx) //更新每一层结点和的最大值
{
maxx=s;
maxh=h;
}
s=0;//下一层计算和依然从0开始
}
}
if(s>maxx)
maxh=h+1; //举个例子吧,当第三层的和此时为最大值,第四层的和小于第三层,不进入更新最大值,但此时第五层的结点和大于第四层但是第五层的结点没有满(不是满二叉树),需要在最后深度+1
printf("%d\n",maxh);
return 0;
}