题目描述
机器人正在玩一个古老的基于 DOS 的游戏。
游戏中有 N+1 座建筑——从 0 到 N 编号,从左到右排列。
编号为 0 的建筑高度为 0 个单位,编号为 i 的建筑高度为 H(i) 个单位。
起初,机器人在编号为 0 的建筑处。
每一步,它跳到下一个(右边)建筑。
假设机器人在第 k 个建筑,且它现在的能量值是 E,下一步它将跳到第 k+1 个建筑。
如果 H(k+1)>E,那么机器人就失去 H(k+1)−E 的能量值,否则它将得到 E−H(k+1) 的能量值。
游戏目标是到达第 N 个建筑,在这个过程中能量值不能为负数个单位。
现在的问题是机器人至少以多少能量值开始游戏,才可以保证成功完成游戏?
输入格式
第一行输入整数 N。
第二行是 N 个空格分隔的整数,H(1),H(2),…,H(N) 代表建筑物的高度。
输出格式
输出一个整数,表示所需的最少单位的初始能量值上取整后的结果。
数据范围
1≤N,H(i)≤1e5
输入样例1:
5
3 4 3 2 4
输出样例1:
4
输入样例2:
3
4 4 4
输出样例2:
4
输入样例3:
3
1 6 4
输出样例3:
3
C++代码_1(暴力穷举法)
#include<iostream>
using namespace std;
#define N 100010
int H[N] = {0};
int Jump(int n, int H[])
{
int minE;
long long E; //注意数据溢出,使用long long
for(int i=1; i<=N; i++)
{
minE = i;
E = i;
int count = 0;
for(int j=1; j<=n; j++)
{
E = 2*E-H[j];
if(E < 0)
break;
count++;
}
// for(int j=1; j<=n; j++)
// {
// if(H[j] > E)
// {
// E = E-(H[j]-E);
// if(E < 0)
// {
// break;
// }
// count++;
// }
// else
// {
// E = E+(E-H[j]);
// count++;
// }
// }
if(count >= n)
{
break;
}
}
return minE;
}
int main()
{
int minE;
int n;
cin>>n;
for(int i=1; i<=n; i++)
{
cin>>H[i];
}
minE = Jump(n, H);
cout<<minE<<endl;
return 0;
}
C++代码_2(二分法)
#include<iostream>
using namespace std;
#define N 100010
int H[N] = {0};
bool check(int parameter, int n)
{
for(int i=1; i<=n; i++)
{
parameter = parameter * 2 - H[i];
if(parameter >= 1e5)
{
return true;
}
if(parameter < 0)
{
return false;
}
}
return true;
}
int main()
{
int n, mid;
cin>>n;
for(int i=1; i<=n; i++)
{
cin>>H[i];
}
int l = 1, r = 1e5;
while(l < r)
{
mid = (l + r) / 2;
if(check(mid, n))
{
r = mid;
}
else
{
l = mid + 1;
}
}
cout<<r<<endl;
return 0;
}