力扣1124.表现良好的最长时间段
题目

题目解析及思路
题目要求找到表现良好时间段的最大长度
表现良好时间段:劳累时间 > 不劳累时间
前缀和
自然想到前缀和求子数组和,将劳累时间即为1,不劳累记为-1
- 哈希表存最小的下标
- 当s[i] > 0 那么他到头可以构成一个合法时间段
- 否则 找到之前的 s[i] - 1 的下标:
- 因为连续的前缀和一定只相差1
- 若想算更小的s[i] - 2,s[i] - 3…
- 一定会先算到s[i] - 1
- 那么这些更小数必然在 s[i]−1 首次出现的位置的右边
代码
class Solution {
public:
int longestWPI(vector<int>& hours) {
int n = hours.size();
vector<int> s(n+1);
for(int i=0;i<n;i++)
{
s[i+1] = s[i];
s[i+1] += hours[i] > 8 ? 1 : -1;
cout<<s[i+1]<<endl;
}
unordered_map<int,int> cnt;
int res=0;
for(int i=0;i<=n;i++)
{
if(s[i] > 0) res = max(res,i);
//找s[i] - 1的,s[i]-2/-3...都在之前遍历到s[i]-1的时候算过了
if(cnt.find(s[i] - 1) != cnt.end())
res = max(res,i - cnt[s[i] - 1]);
if(cnt.find(s[i]) == cnt.end())
cnt[s[i]] = i;
}
return res;
}
};
单调栈
还有一个单调栈的方法:最大化i - j
代码
class Solution {
public:
int longestWPI(vector<int>& hours) {
int n = hours.size() , res = 0,s[n+1];
stack<int> st;
s[0] = 0;
st.push(0);
for(int i=1;i<=n;i++)
{
//求前缀和
s[i] = s[i-1] + (hours[i - 1] > 8 ? 1 : -1);
//顺便找期待的j
if(s[i] < s[st.top()]) st.emplace(i);
}
for(int i = n;i;i--)
{
//找到满足条件的i 计算答案 弹出栈顶
while(!st.empty() && s[i] >s[st.top()])
{
res = max(res,i - st.top());
st.pop();
}
}
return res;
}
};
1017

被折叠的 条评论
为什么被折叠?



