力扣1124.表现良好的最长时间段

力扣1124.表现良好的最长时间段

题目

在这里插入图片描述

题目解析及思路

题目要求找到表现良好时间段的最大长度

表现良好时间段:劳累时间 > 不劳累时间

前缀和

自然想到前缀和求子数组和,将劳累时间即为1,不劳累记为-1

  • 哈希表存最小的下标
    • 当s[i] > 0 那么他到头可以构成一个合法时间段
    • 否则 找到之前的 s[i] - 1 的下标:
      • 因为连续的前缀和一定只相差1
      • 若想算更小的s[i] - 2,s[i] - 3…
      • 一定会先算到s[i] - 1
      • 那么这些更小数必然在 s[i]−1 首次出现的位置的右边

代码

class Solution {
public:
    int longestWPI(vector<int>& hours) {
        int n = hours.size();
        vector<int> s(n+1);
        for(int i=0;i<n;i++)
        {
            s[i+1] = s[i];
            s[i+1] += hours[i] > 8 ? 1 : -1;
            cout<<s[i+1]<<endl;
        }
        
        unordered_map<int,int> cnt;
        int res=0;
        for(int i=0;i<=n;i++)
        {
            if(s[i] > 0) res = max(res,i);
            //找s[i] - 1的,s[i]-2/-3...都在之前遍历到s[i]-1的时候算过了
            if(cnt.find(s[i] - 1) != cnt.end())
                res = max(res,i - cnt[s[i] - 1]);
            if(cnt.find(s[i]) == cnt.end())
                cnt[s[i]] = i;
        }
        return res;
    }
};

单调栈

还有一个单调栈的方法:最大化i - j

代码

class Solution {
public:
    int longestWPI(vector<int>& hours) {
        int n = hours.size() , res = 0,s[n+1];
        stack<int> st;
        s[0] = 0;
        st.push(0);
        for(int i=1;i<=n;i++)
        {
            //求前缀和
            s[i] = s[i-1] + (hours[i - 1] > 8 ? 1 : -1);
            //顺便找期待的j
            if(s[i] < s[st.top()]) st.emplace(i);
        }
        for(int i = n;i;i--)
        {
            //找到满足条件的i 计算答案 弹出栈顶
            while(!st.empty() && s[i] >s[st.top()])
            {
                res = max(res,i - st.top());
                st.pop();
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阳光男孩01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值