力扣3148.矩阵中的最大得分

力扣3148.矩阵中的最大得分

题目解析及思路

题目要求找到最大的得分

差距最大的左上和右下的元素值

  • 类似二维前缀和,这里s存的是前缀区间的最小值而不是和

  • f[i+1][j+1]左上角在(0,0)右下角在(i,j)的子矩阵的最小值

  • f[i+1][j+1]=min(f[i+1][j],f[i][j+1],grid[i][j])

    • 枚举右下角 求(i,j) - (0,0)的子矩阵的最小值
    • 每次与当前点作差 求答案

代码

class Solution {
public:
    int maxScore(vector<vector<int>>& grid) {
        int res = INT_MIN;
        int m = grid.size(),n = grid[0].size();
        vector<vector<int>> s(m+1,vector<int>(n+1,INT_MAX));
        for(int i=0;i<m;i++)
            for(int j=0;j<n;j++)
            {
                //子矩阵(0,0) - (i,j)的不包含(i,j)的最小值
                int t = min(s[i][j+1],s[i+1][j]);
                res = max(res,grid[i][j] - t);
                s[i+1][j+1] = min(t,grid[i][j]);
            }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阳光男孩01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值