数据分析---3-2 pandas数据可视化具体案例

本文通过四个实例展示了如何利用pandas进行数据分析和可视化,包括星巴克店铺统计、911紧急电话次数分析、多个城市PM2.5变化趋势以及全球畅销书籍数据洞察。详细分析了各地区星巴克数量、911电话类型分布、空气质量变化以及书籍年份分布等。
摘要由CSDN通过智能技术生成

目录

 

 

例1、星巴克店铺统计

1、如果我想知道美国的星巴克数量和中国的哪个多?

2、 中国每个省份星巴克的数量的情况

3、国内星巴克数量排名前25的城市

此处注意一个区别!!!

4、使用matplotlib呈现出店铺总数排名前10的国家

例2:911紧急电话统计

1、请统计出出这些数据中不同类型的紧急情况的次数

2、统计出不同月份不同类型紧急电话的次数的变化情况

3、统计出不同月份不同类型的电话的次数的变化情况

例3 绘制出5个城市的PM2.5随时间的变化情况

例4 全球排名靠前的10000本书的数据

1、不同年份书的数量

2、不同年份书的平均评分情况


 

例1、星巴克店铺统计

现在我们有一组关于全球星巴克店铺的统计数据:

1、如果我想知道美国的星巴克数量和中国的哪个多?

2、中国每个省份星巴克的数量的情况, 应该怎么办?

3、国内星巴克数量排名前25的城市

4、使用matplotlib呈现出店铺总数排名前10的国家

 

1、如果我想知道美国的星巴克数量和中国的哪个多?

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt

file_path = "./starbucks_store_worldwide.csv"

df = pd.read_csv(file_path)

grouped = df.groupby(by="Country")
# print(grouped)

# 数据格式=DataFrameGroupBy==可迭代、每个元素是一个元组
# 每个元组==(索引,索引值) 其中索引值==DataFrame(索引i,i对应数据)
# DataFrameGroupBy对象的方法:count、sum、mean、median(算术中位数)、std(标准差)、var(方差)、max、min
# 返回结果是:不同国家为1维度、2维度是DataFrame(对应国家内所有星巴克店铺)
# 遍历该DataFrameGroupBy对象
for i,j in grouped:
#     print(i)# 国家名称
#     print("-"*100)
#     print(j)#该国所有星巴克店铺

# # 美国星巴克的信息
# print(df[df["Country"]=="US"])
# # 中国星巴克的信息
# print(df[df["Country"]=="CN"])

# 以品牌聚合dataframe并统计星巴克数量
country_count = grouped["Brand"].count()
print("美国有{}家店".format(country_count["US"]))
print("中国有{}家店".format(country_count["CN"]))

2、 中国每个省份星巴克的数量的情况

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt

file_path = "./starbucks_store_worldwide.csv"

df = pd.read_csv(file_path)
# 统计中国每个省份店铺的数量,返回1个Series
china_data = df[df["Country"]=="CN"]
# print(china_data)
grouped = china_data.groupby(by = "State/Province").count()["Brand"]
country={"11":"北京",'12':"天津", '13':"河北", '14':"山西", '15':"内蒙古", '21':"辽宁", '22':"吉林", '23':"哈尔滨", '31':"上海", '32':"江苏", '33':"杭州", '34':"安徽",
       '35':"福建", '36':"江西", '37':"山东", '41':"河南", '42':"湖北", '43':"湖南", '44':"广东", '45':"广西", '46':"海南", '50':"重庆", '51':"四川", '52':"贵阳",
       '53':"云南", '61':"陕西", '62':"甘肃", '63':"青海", '64':"宁夏", '91':"香港", '92':"澳门"}
_x = []
for i in grouped.index:
    _x.append(country[i])

_y = grouped.values
print(_x, len(_y))
plt.figure(figsize=(20,8), dpi=80)
plt.bar(range(len(_x)), _y)
plt.xticks(range(len(_x)), _x, rotation=45,fontproperties="SimHei")
plt.xlabel("省份", fontproperties="SimHei")
plt.ylabel("星巴克数量",fontproperties="SimHei")
plt.title("国内各省份星巴克数量统计",fontproperties="SimHei")
plt.show()
plt.savefig("./startbucks.png")

3、国内星巴克数量排名前25的城市


import pandas as pd
import numpy as np
from matplotlib import pyplot as plt

file_path = "./starbucks_store_worldwide.csv"

df = pd.read_csv(file_path)
# 使用matplotlib呈现出中国每个城市的店
数据分析与可视化一直是数据科学领域中最重要的部分之一。Jupyter作为一个开源的交互式计算环境,可实现数据采集、数据分析和可视化,且易于学习和使用。在这里,我们演示一个基于Jupyter的数据采集-数据分析-可视化综合案例。 首先,我们需要采集数据。我们可以通过使用Python的requests库来访问网站,并使用BeautifulSoup库提取所需数据。例如,我们可以采集电影评分网站IMDb的电影评分数据。 接下来,我们需要进行数据清洗和预处理。我们可以使用Python的pandas库来清理和加工数据。例如,我们可以删除缺失值、重复值和异常值,并将数据类型转换为适合分析和可视化的格式。 在数据预处理后,我们可以开始进行数据分析。我们可以使用Python的numpy、matplotlib和seaborn库等,在Jupyter中进行数据分析。例如,我们可以绘制电影的得分分布、类别分布和年份分布图表等。 最后,我们可以开始进行可视化。我们可以使用Python的plotly和bokeh库等,实现交互式数据可视化。例如,我们可以制作热力图、地图和动态图等,并将它们添加到Jupyter Notebook中,使读者可以与之交互。 综上所述,Jupyter是一个功能强大、易于学习和使用的数据采集-数据分析-可视化综合工具。通过基于Jupyter的数据分析和可视化,我们可以更好地理解和解释数据,更好地进行决策和规划。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值