数据分析实战——星巴克门店数量可视化分析

本文使用Python对星巴克门店分布进行可视化分析,包括全球各国门店数量排名,中国城市分布,以及经营方式占比。数据源来自Kaggle,展示了门店最多的国家、城市以及品牌统计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

星巴克门店分布可视化分析

项目介绍:使用python对星巴克门店分布进行可视化分析

数据背景:数据源来自与Kaggle: Starbucks Locations Worldwide | Kaggle,囊括了截至2017/2月份全球星巴克门店的基础信息,包括品牌名称、门牌地址、所在国家、经纬度等一系列详细的信息。
数据介绍:

字段名称 解释说明
Brand 品牌名称
Store Number 门店编号
Store name 门店名称
Ownership Type 门店所有权类型
Street Address State/Province
City 门店所在的城市
State/Province 门店所在的省份
Country 门店所在的国家
Postcode 门店所在地址的邮政编码
Phone Number 门店的联系电话
Timezone 门店所在地的时区
Longitude 门店地址的经度
Latitude 门店地址的纬度
centered 文本居中 right-aligned 文本居右

任务概述

  • 星巴克旗下有多少个品牌
  • 统计全球有多少个国家开设了星巴克门店,显示排名前五和后十的国家
  • 显示拥有星巴克门店数量前十的城市
  • 按照星巴克在中国的分布情况,统计排名前十的城市
  • 用饼图显示星巴克的经营方式有几种

导入必要的数据包

import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

读取数据并查看

data = pd.read_csv(r'./Desktop/directory.csv.csv')
data.head()

在这里插入图片描述

查看缺失值

data.isnull().sum()

在这里插入图片描述
利用isnull()函数对数据进行缺失值统计,可以发现每一列数据的缺失情况,在此数据中city、postcode、phone number字段存在较多缺失值,但本次任务处理的指标与其相关不大,故不对其进行处理

统计星巴克旗下有多少品牌

num = len(data['Brand'].unique())
print('星巴克旗下有%d个品牌'%num)
data['Brand'].value_counts()

在这里插入图片描述
利用unique()函数对”Brand‘字段进去去重处理,得到星巴克旗下的品牌数量,再利用value_counts函数对每一个品牌的门店数量进行统计,发现星巴克旗下一共有4个品牌,其中Sta

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值