代码随想录【Day 8】 | 20. 有效的括号 、 1047. 删除字符串中的所有相邻重复项、150. 逆波兰表达式求值
20. 有效的括号
题目链接:20.有效的括号
卡尔文解
解题思路重点:
-
第一种情况,字符串里左方向的括号多余了 ,所以不匹配。
-
第二种情况,括号没有多余,但是 括号的类型没有匹配上。
-
第三种情况,字符串里右方向的括号多余了,所以不匹配。
我们的代码只要覆盖了这三种不匹配的情况,就不会出问题,可以看出 动手之前分析好题目的重要性。
代码实现:
class Solution {
public:
bool isValid(string s) {
stack<char> stk;
int size = s.size();
if ( (size % 2 ) != 0 ) return false;
// Totally 3 scenarios:
// 1. More left braces.
// 2. equal braces but not matched.
// 3. More right braces.
for ( int idx = 0; idx < size; idx++ ){
if ( s[ idx ] == '(' )
stk.push( ')' );
else if ( s[ idx ] == '[')
stk.push( ']' );
else if ( s[ idx ] == '{')
stk.push( '}' );
else if ( stk.empty() || ( s[ idx ] != stk.top()) )
return false;
else
stk.pop();
}
return stk.empty();
}
};
1047. 删除字符串中的所有相邻重复项
题目链接:1047.删除字符串中的所有相邻重复项
卡尔文解
解题思路及注意事项:
本题要删除相邻相同元素,相对于20. 有效的括号 (opens new window)来说其实也是匹配问题,20. 有效的括号 是匹配左右括号,本题是匹配相邻元素,最后都是做消除的操作。
本题也是用栈来解决的经典题目。
那么栈里应该放的是什么元素呢?
我们在删除相邻重复项的时候,其实就是要知道当前遍历的这个元素,我们在前一位是不是遍历过一样数值的元素,那么如何记录前面遍历过的元素呢?
所以就是用栈来存放,那么栈的目的,就是存放遍历过的元素,当遍历当前的这个元素的时候,去栈里看一下我们是不是遍历过相同数值的相邻元素。
然后再去做对应的消除操作。 如动画所示:
代码实现:
class Solution {
public:
// Use a string instead of stack , will output result accordingly.
// Use a String to simulate a stack
// Tail ------------------> Head
// back a b c d front
string removeDuplicates(string s) {
string result;
for ( char c: s ){
// A or B
if ( s.empty() || ( c != result.back()) )
result.push_back( c );
// Not ( A or B ) = ( !A && !B )
// means ( result is not empty && c equals result back char )
else
result.pop_back();
}
return result;
}
};
150. 逆波兰表达式求值
题目链接:150.逆波兰表达式求值
卡尔文解
解题思路及注意事项:
在上一篇文章中1047.删除字符串中的所有相邻重复项 (opens new window)提到了 递归就是用栈来实现的。
所以栈与递归之间在某种程度上是可以转换的! 这一点我们在后续讲解二叉树的时候,会更详细的讲解到。
那么来看一下本题,其实逆波兰表达式相当于是二叉树中的后序遍历。 大家可以把运算符作为中间节点,按照后序遍历的规则画出一个二叉树。
但我们没有必要从二叉树的角度去解决这个问题,只要知道逆波兰表达式是用后序遍历的方式把二叉树序列化了,就可以了。
在进一步看,本题中每一个子表达式要得出一个结果,然后拿这个结果再进行运算,那么这岂不就是一个相邻字符串消除的过程,和1047.删除字符串中的所有相邻重复项 (opens new window)中的对对碰游戏是不是就非常像了。
代码实现:
class Solution {
public:
int evalRPN(vector<string>& tokens) {
stack<long long> stk;
for ( auto item : tokens ){
cout << "item = " << item << endl;
if (( item == "+") ||
( item == "-") ||
( item == "*") ||
( item == "/") ){
long long op1 = stk.top(); stk.pop();
long long op2 = stk.top(); stk.pop();
if ( item == "+" ) stk.push( op2 + op1 );
if ( item == "-" ) stk.push( op2 - op1 );
if ( item == "*" ) stk.push( op2 * op1 );
if ( item == "/" ) stk.push( op2 / op1 );
}
else{
stk.push( stoll( item ));
}
}
return( stk.top());
}
};