使用R语言计算均方根误差(RMSE)的方法

90 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言计算均方根误差(RMSE),这是一种评估预测模型准确性的指标。通过定义观测值和预测值向量,计算误差,求均方误差(MSE)再开方,即可得到RMSE。RMSE值越小,表明模型准确性越高。利用RMSE,可以比较并选择最佳预测模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用R语言计算均方根误差(RMSE)的方法

均方根误差(Root Mean Square Error,RMSE)是一种常用的衡量预测模型准确性的指标。它用于评估预测值与观测值之间的差异程度,是回归问题中常见的评价指标之一。在R语言中,我们可以使用以下代码来计算RMSE。

假设我们有一组观测值和对应的预测值,可以将其表示为两个向量。假设观测值向量为observed,预测值向量为predicted。

observed <- c(1, 2, 3, 4, 5)  # 观测值向量
predicted <- c(1.2, 1.8, 3.2, 3.7, 4.9)  # 预测值向量

# 计算误差向量
errors <- observed - predicted

# 计算均方误差
mse <- mean(errors^2)

# 计算均方根误差
rmse <- sqrt(mse)

rmse  # 输出均方根误差结果

在上述代码中,我们首先定义了观测值向量observed和预测值向量predicted。然后,我们计算了误差向量errors,这是观测值与预测值之间的差异。接下来,我们使用mean函数计算误差的均方误差(Mean Squared Error,MSE),即将误

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值