GraphSAGE(Graph Sample and Aggregated)是一种用于图神经网络的节点嵌入方法,能够学习出节点的低维度表示向量。本文将使用PyTorch框架,详细介绍如何实现GraphSAGE,并展示其在节点分类任务上的应用。
1. 引言
图神经网络是近年来兴起的一类深度学习模型,用于处理图结构化数据。GraphSAGE是其中一种重要的图神经网络模型,它通过采样和聚合的方式,从邻居节点中获得丰富的局部信息,并将其编码成节点的低维度表示向量。
在本文中,我们将使用PyTorch框架实现GraphSAGE,并以节点分类任务作为示例来评估该模型的性能。
2. 数据准备
首先,我们需要准备一个图数据集。我们将使用Cora数据集作为示例,这是一个常用的图数据集,包含了2708个科学出版物的引用关系。
import torch
from torch_geometric.datasets import Planetoid
dataset