PyTorch实现GraphSAGE:图神经网络的新里程碑

本文介绍了如何使用PyTorch实现GraphSAGE图神经网络模型,通过Cora数据集进行节点分类任务。GraphSAGE采用采样和聚合策略学习节点的低维度表示,实验结果显示其在节点分类中表现出色。文章详细阐述了数据准备、模型构建、训练过程及性能分析,为读者提供了实践指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GraphSAGE(Graph Sample and Aggregated)是一种用于图神经网络的节点嵌入方法,能够学习出节点的低维度表示向量。本文将使用PyTorch框架,详细介绍如何实现GraphSAGE,并展示其在节点分类任务上的应用。

1. 引言

图神经网络是近年来兴起的一类深度学习模型,用于处理图结构化数据。GraphSAGE是其中一种重要的图神经网络模型,它通过采样和聚合的方式,从邻居节点中获得丰富的局部信息,并将其编码成节点的低维度表示向量。

在本文中,我们将使用PyTorch框架实现GraphSAGE,并以节点分类任务作为示例来评估该模型的性能。

2. 数据准备

首先,我们需要准备一个图数据集。我们将使用Cora数据集作为示例,这是一个常用的图数据集,包含了2708个科学出版物的引用关系。

import torch
from torch_geometric.datasets import Planetoid

dataset 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值