K Means算法实现聚类分析

本文详细介绍了K Means算法,包括动态聚类算法的概念、K均值算法的工作原理、实现步骤,以及如何使用sklearn库进行代码实现。通过实例展示了KMeans在聚类分析中的应用。
摘要由CSDN通过智能技术生成

K Means算法实现聚类分析

一、动态聚类算法介绍

动态聚类算法选择若干样品作为聚类中心,再按照某种聚类准则,如最小距离准则,将其余样品归入最近的中心,得到初始分类。然后判断初始分类是否合理,若不合理则按照特定规则重新修改不合理的分类,如此反复选代,直到分类合理。

二、K均值算法介绍

​ K均值算法能够使聚类域中所有样品到聚类中心距离的平方和最小。其原理为:先取k个初始距离中心,计算每个样品到这k个中心的距离,找出最小距离把样品归人最近的聚类中心,修改中心点的值为本类所有样品的均值,再计算各个样品到k个中心的距离,重新归类、修改新的中心点。直到新的距离中心等于上一次的中心点时结束。此算法的结果受到聚类中心的个数以及初始聚类中心的选择影响,也受到样品几何性质及排列次序影响。如果样品的几何特性表明它们能形成几个相距较远的小块孤立区域,则算法多能收敛。

三、K均值算法实现步骤

1、先定义总共有多少个类/簇

2、将每个簇心随机定在一个点上

3、将每个数据点关联到最近簇中心所属的簇上

4、对于每一个簇找到其所有关联点的中心点(取每一个点坐标的平均值)

5、将上述点变为新的簇心

6、不停重复,直到每个簇所拥有的点不变

四、代码实现

这里用 sklearn 的数据生成工具 make_blobs( ) 来合成所需的数据。make_blobs( ) 方法常被用来生成聚类算法的测试数据,简单来说,make_blobs( ) 会根据用户指定的样本数量、特征数量、簇中心数量、生成数据的波动范围等来生成数据,这些数据可用于测试聚类算法的效果。

代码如下:

首先用sklearn包生成训练集模板(这里的簇心为4)

# 导入必要的包或方法,包括绘图的 Matplotlib 和生成数据的 make_blobs。
import matplotlib.pyplot as plt
# 导入生成数据的方法
import sklearnfrom sklearn.datasets import make_blobs
# 生成合成数据# n_samples是待生成的样本总数
# centers 表示要生成的样本中心(类别)数,或是确定的中心点数量
blobs = make_blobs(n_samples=200, random_state=1, centers=4)
X_blobs = blobs[0]  # 提取特征数据
plt.scatter(X_blobs[:, 0], X_blobs[:,<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值