Python大数据分析——Kmeans聚类分析

介绍

对于有监督的数据挖掘算法而言,数据集中需要包含标签变量(即因变量y的值)。但在有些场景下,并没有给定的y值,对于这类数据的建模,一般称为无监督的数据挖掘算法,最为典型的当属聚类算法。
Kmeans聚类算法利用距离远近的思想将目标数据聚为指定的k个簇,进而使样本呈现簇内差异小,簇间差异大的特征。

步骤

  1. 从数据中随机挑选k个样本点作为原始的簇中心
  2. 计算剩余样本与簇中心的距离,并把各样本标记为离k个簇中心最近的类别
  3. 重新计算各簇中样本点的均值,并以均值作为新的k个簇中心
  4. 不断重复第二步和第三步,直到簇中心的变化趋于稳定,形成最终的k个簇
    在这里插入图片描述

数学分析

目标函数

在Kmeans聚类模型中,对于指定的k个簇,只有簇内样本越相似,聚类效果才越好。基于这个思想,可以理解为簇内样本的离差平方和之和达到最小即可。进而可以行生出Kmeans聚类的目标函数:
在这里插入图片描述
其中,cj表示第j个簇的簇中心,xi属于第j个簇的样本i,nj表示第j个簇的样本总量。对于该目标函数而言,cj是未知的参数,要想求得目标函数的最小值,得先知道参数cj的值。

我们对目标函数求偏导:
在这里插入图片描述
令其导数为0:
在这里插入图片描述

K值选择

拐点法

簇内离差平方和拐点法的思想很简单,就是在不同的k值下计算簇内离差平方和,然后通过可视化的方法找到“拐点”所对应的k值。当折线图中的斜率由大突然变小时,并且之后的斜率变化缓慢,则认为突然变化的点就是寻找的目标点,因为继续随着簇数k的增加,聚类效果不再有大的变化。

也就是在变换最大的处,就是我们要找的类别数,也就是K值:
在这里插入图片描述
自定义函数:

def k_SSE(X, clusters):
	# 选择连续的K种不同的值
	K = range(1,clusters+1)
	# 构建空列表用于存储总的簇内离差平方和
	TSSE = []
	for k in K:
		# 用于存储各个簇内离差平方和
		SSE = []
		kmeans = KMeans(n_clusters=k)
		kmeans.fit(X)
		# 返回簇标签
		labels = kmeans.labels_
		# 返回簇中心
		centers = kmeans.cluster_centers_
		# 计算各簇样本的离差平方和,并保存到列表中
		for label in set(labels):
			SSE.append(np.sum((X.loc[labels == label,]-centers[label,:])**2))
	# 计算总的簇内离差平方和
	TSSE.append(np.sum(SSE))

轮廓系数法

该方法综合考虑了簇的密集性与分散性两个信息,如果数据集被分割为理想的k个簇,那么对应的簇内样本会很密集,而族间样本会很分散。轮廓系数的计算公式可以表示为:
在这里插入图片描述
其中,a(i)体现了簇内的密集性,代表样本i与同簇内其他样本点距离的平均值;b(i)反映了簇间的分敬性,它的计算过程是,样本i与其他非同簇样本点距离的平均值,然后从平均值中挑选出最小值。
当S(i)接近于-1时,说明样本i分配的不合理,需要将其分配到其他簇中;当S(i)近似为0时,说明样本落在了模糊地带,即簇的边界处;当S(i)近似为1时,说明样本i的分配是合理的。
所以我们希望的是ai,也就是类内越小越好;bi,也就是类间,越大越好。

假设数据集被拆分为4个簇,样本i对应的a(i)值就是所有C1中其他样本点与样本i的距离平均值;样本i对应的b(i)值分两步计算,首先计算该点分别到C2、C3和C4中样本点的平均距离,然后将三个平均值中的最小值作为b(i)的度量。
在这里插入图片描述

# 构造自定义函数
def k_silhouette(X, clusters):
	K = range(2,clusters+1)
	# 构建空列表,用于存储不同簇数下的轮廓系数
	S = []
	for k in K:
		kmeans = KMeans(n_clusters=k)
		kmeans.fit(X)
		labels = kmeans.labels_
		# 调用子模块metrics中的silhouette_score函数,计算轮廓系数
		S.append(metrics.silhouette_score(X, labels, metric='euclidean'))

当这个值最大,接近于1的时候,就是我们选择的K的值:
在这里插入图片描述

函数

KMeans(n_clusters=8, init=‘k-means++’, n_init=10, max_iter=300, tol=0.0001)
n_clusters:用于指定聚类的簇数
init:用于指定初始的簇中心设置方法,如果为’k-means++‘,则表示设置的初始簇中心之间相距较远;如果为’random’,则表示从数据集中随机挑选k个样本作为初始簇中心;如果为数组,则表示用户指定具体的簇中心
n_init:用于指定Kmeans算法运行的次数,每次运行时都会选择不同的初始簇中心,目的是防止算法收敛于局部最优,默认为10
max_iter:用于指定单次运行的迭代次数,默认为300
tol:用于指定算法收敛的阈值,默认为0.0001

示例

已知k值的情况——iris聚类

首先我们通过已知k值的情况下,通过有y标签的,画出的图像;对比我们聚类得到的图像,验证我们的方法是否良好。

  1. 导入包读取数据集
# 导入第三方包
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

# 读取iris数据集
iris = pd.read_csv(r'D:\pythonProject\data\iris.csv')
# 查看数据集的前几行
iris.head()

输出:
在这里插入图片描述

  1. 构建Kmeans模型,对其标签结果进行分析
# 提取出用于建模的数据集X
X = iris.drop(labels = 'Species', axis = 1)
# 构建Kmeans模型
kmeans = KMeans(n_clusters = 3)
kmeans.fit(X)
# 聚类结果标签
X['cluster'] = kmeans.labels_
# 各类频数统计
X.cluster.value_counts()

输出:
在这里插入图片描述

  1. 首先来看我们Kmeans模型,聚类得到的分布
# 导入第三方模块
import seaborn as sns

# 三个簇的簇中心
centers = kmeans.cluster_centers_
# 绘制聚类效果的散点图
sns.lmplot(x = 'Petal_Length', y = 'Petal_Width', hue = 'cluster', markers = ['^','s','o'], 
           data = X, fit_reg = False, scatter_kws = {'alpha':0.8}, legend_out = False)
plt.scatter(centers[:,2], centers[:,3], marker = '*', color = 'black', s = 130)
plt.xlabel('Petal_Length')
plt.ylabel('Petal_Width')
# 图形显示
plt.show()

在这里插入图片描述

  1. 再来看我们原始分布是什么样子
# 增加一个辅助列,将不同的花种映射到0,1,2三种值,目的方便后面图形的对比
iris['Species_map'] = iris.Species.map({'virginica':0,'setosa':1,'versicolor':2})
# 绘制原始数据三个类别的散点图
sns.lmplot(x = 'Petal_Length', y = 'Petal_Width', hue = 'Species_map', data = iris, markers = ['^','s','o'],
           fit_reg = False, scatter_kws = {'alpha':0.8}, legend_out = False)
plt.xlabel('Petal_Length_old')
plt.ylabel('Petal_Width_old')
# 图形显示
plt.show()

在这里插入图片描述
我们通过对比发现基本上是差不多的,这说明我们的Kmeans模型十分有效,一般情况下我们是不知道K值的,也没用y标签,下面我们讲正常情况下的聚类例子。

未知k值的情况——NBA球员分类

  1. 导入功能包,读取数据
# 导入第三方包
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import metrics # 轮廓系数包

# 读取球员数据
players = pd.read_csv(r'D:\pythonProject\data\players.csv')
players.head()

在这里插入图片描述

  1. 查看数据分布
# 绘制得分与命中率的散点图
sns.lmplot(x = '得分', y = '命中率', data = players, 
           fit_reg = False, scatter_kws = {'alpha':0.8, 'color': 'steelblue'})
plt.rcParams['font.family'] = ['SimHei'] # matplotlib显示中文字
plt.show()

在这里插入图片描述

  1. 构造拐点法函数
# 构造自定义函数,用于绘制不同k值和对应总的簇内离差平方和的折线图
def k_SSE(X, clusters):
    # 选择连续的K种不同的值
    K = range(1,clusters+1)
    # 构建空列表用于存储总的簇内离差平方和
    TSSE = []
    for k in K:
        # 用于存储各个簇内离差平方和
        SSE = []
        kmeans = KMeans(n_clusters=k)
        kmeans.fit(X)
        # 返回簇标签
        labels = kmeans.labels_
        # 返回簇中心
        centers = kmeans.cluster_centers_
        # 计算各簇样本的离差平方和,并保存到列表中
        for label in set(labels):
            SSE.append(np.sum((X.loc[labels == label,]-centers[label,:])**2))
        # 计算总的簇内离差平方和 
        TSSE.append(np.sum(SSE))

    # 中文和负号的正常显示
    plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    # 设置绘图风格
    plt.style.use('ggplot')
    # 绘制K的个数与GSSE的关系
    plt.plot(K, TSSE, 'b*-')
    plt.xlabel('簇的个数')
    plt.ylabel('簇内离差平方和之和')
    # 显示图形
    plt.show()
  1. 构造轮廓系数法
# 构造自定义函数,用于绘制不同k值和对应轮廓系数的折线图
def k_silhouette(X, clusters):
    K = range(2,clusters+1)
    # 构建空列表,用于存储个中簇数下的轮廓系数
    S = []
    for k in K:
        kmeans = KMeans(n_clusters=k)
        kmeans.fit(X)
        labels = kmeans.labels_
        # 调用字模块metrics中的silhouette_score函数,计算轮廓系数
        S.append(metrics.silhouette_score(X, labels, metric='euclidean'))

    # 中文和负号的正常显示
    plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
    plt.rcParams['axes.unicode_minus'] = False
    # 设置绘图风格
    plt.style.use('ggplot')    
    # 绘制K的个数与轮廓系数的关系
    plt.plot(K, S, 'b*-')
    plt.xlabel('簇的个数')
    plt.ylabel('轮廓系数')
    # 显示图形
    plt.show()
  1. 对数据进行标准化处理,然后寻找K值
    对数据进行标准化后,首先来看拐点法:
from sklearn import preprocessing
# 数据标准化处理
X = preprocessing.minmax_scale(players[['得分','罚球命中率','命中率','三分命中率']])
# 将数组转换为数据框
X = pd.DataFrame(X, columns=['得分','罚球命中率','命中率','三分命中率'])
# 使用拐点法选择最佳的K值
k_SSE(X, 15)

在这里插入图片描述
我们发现3之后变换就没那么大了,那么3可能就是我们要选的值。
我们再看轮廓系数法:

# 使用轮廓系数选择最佳的K值
k_silhouette(X, 10)

在这里插入图片描述
但因为其数值特别小,我们人为是不可靠的,一般只有轮廓系数比较接近于1时,才是比较靠谱的

  1. 通过得到的K值进行聚类分析
# 将球员数据集聚为3类
kmeans = KMeans(n_clusters = 3)
kmeans.fit(X)
# 将聚类结果标签插入到数据集players中
players['cluster'] = kmeans.labels_
# 构建空列表,用于存储三个簇的簇中心
centers = []
for i in players.cluster.unique():
    centers.append(players.loc[players.cluster == i,['得分','罚球命中率','命中率','三分命中率']].mean())
# 将列表转换为数组,便于后面的索引取数
centers = np.array(centers)

# 绘制散点图
sns.lmplot(x = '得分', y = '命中率', hue = 'cluster', data = players, markers = ['^','s','o'],
           fit_reg = False, scatter_kws = {'alpha':0.8}, legend = False)
# 添加簇中心
plt.scatter(centers[:,0], centers[:,2], c='k', marker = '*', s = 180)
plt.xlabel('得分')
plt.ylabel('命中率')
# 图形显示
plt.show()

在这里插入图片描述

注意:在Pandas的早期版本中,ix 是一个方便的索引器,允许用户通过标签和整数位置来索引DataFrame的行和列。然而,随着Pandas版本的更新,为了简化API和提高代码的可读性,ix 索引器在Pandas 0.20.0版本中被弃用,并在后续版本中完全移除。因此,如果你尝试在较新版本的Pandas中使用 ix,你将会遇到一个 AttributeError。所以我们要改为.loc或者.iloc

  • 12
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥都鼓捣的小yao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值