工程数学 计算方法 第五章 数值积分

数值积分

数值微分

微分

定义:
f ( x ) = lim ⁡ h → 0 f ( a + h ) − f ( h ) h f\left( x \right) = \underset{h\rightarrow 0}{\lim}\frac{f\left( a+h \right) -f\left( h \right)}{h} f(x)=h0limhf(a+h)f(h)
实际运算中会遇到的困难:

  1. f(x)以函数表的形式给出
  2. f(x)复杂,不便求导
  3. 计算机不会算极限(编程/计算方法)

数值微分:近似求导

只知函数表,计算微分:用函数数值的线性组合来表示微分 → 数值微分。
即找Ai使得
∑ i = 0 N A i f ( x i ) ≈ f ′ ( a ) \sum_{i=0}^NA_if(x_i) \approx f'(a) i=0NAif(xi)f(a)

差商法

原理

斜率近似导数。

已知A(a,f(a)),B(a+h,f(a+h)),C(a-h,f(a-h)),求A点处的导数值:用斜率近似导数.
AB的斜率:向前差商
f ′ ( x ) = f ( a + h ) − f ( a ) h = f [ a , a + h ] f'(x)=\frac{f(a+h)-f(a)}{h}=f[a,a+h] f(x)=hf(a+h)f(a)=f[a,a+h]

AB的斜率:向后差商
f ′ ( x ) = f ( a ) − f ( a − h ) h = f [ a − h , a ] f'(x)=\frac{f(a)-f(a-h)}{h}=f[a-h,a] f(x)=hf(a)f(ah)=f[ah,a]
BC的斜率:中心差商
f ′ ( x ) = f ( a + h ) − f ( a − h ) 2 h = G ( h ) f'(x)=\frac{f(a+h)-f(a-h)}{2h}=G(h) f(x)=2hf(a+h)f(ah)=G(h)
在这里插入图片描述

误差分析

方法:泰勒公式展开
f ( a + h ) = f ( a ) + h f ′ ( a ) + h 2 2 ! f ′ ′ ( ξ ) f(a+h)=f(a)+hf'(a)+\frac{h^2}{2!}f''(\xi) f(a+h)=f(a)+hf(a)+2!h2f(ξ)
向前差商:
R ( x ) = f ′ ( a ) − f ( a + h ) − f ( a ) h = − h 2 f ′ ′ ( ξ ) = O ( h ) R(x)=f'(a)-\frac{f(a+h)-f(a)}{h}=-\frac{h}{2}f''(\xi)=O(h) R(x)=f(a)hf(a+h)f(a)=2hf(ξ)=O(h)
向后差商:
R ( x ) = f ′ ( a ) − f ( a ) − f ( a − h ) h = − h 2 f ′ ′ ( ξ ) = O ( h ) R(x)=f'(a)-\frac{f(a)-f(a-h)}{h}=-\frac{h}{2}f''(\xi)=O(h) R(x)=f(a)hf(a)f(ah)=2hf(ξ)=O(h)
中心差商:
R ( x ) = f ′ ( a ) − G ( a ) = h 2 12 ( f ′ ′ ′ ( ξ 1 ) + f ′ ′ ′ ( ξ 2 ) ) = h 2 6 f ′ ′ ′ ( ξ ) = O ( h 2 )   ξ   , ξ 1 , ξ 2 ∈ ( a − h , a + h ) R(x)=f'(a)-G(a)=\frac{h^2}{12}(f'''(\xi_1)+f'''(\xi_2))=\frac{h^2}{6}f'''(\xi)=O(h^2)\\\,\\\xi\,,\xi_1,\xi_2 \in(a-h,a+h) R(x)=f(a)G(a)=12h2(f(ξ1)+f(ξ2))=6h2f(ξ)=O(h2)ξ,ξ1,ξ2(ah,a+h)

  1. 由截断误差,步长h越小,精度越高
  2. 但h越小,f(a+h)与f(a-h)越接近,由于舍入误差,可能会导致结果为0的情况出现
优化:变步长算法

二分步长,误差采用事后估计法自动选择步长

D 1 = G ( h ) ,   D 2 = G ( h 2 ) D_1=G(h),\,D_2=G(\frac{h}{2}) D1=G(h),D2=G(2h)

f ′ ( a ) − D 1 ≈ O ( h 2 ) ,   f ′ ( a ) − D 2 ≈ O ( h 2 ) 2   ⇒ f ′ ( a ) − D 2 f ′ ( a ) − D 1 ≈ 1 4   ⇒ f ′ ( a ) − D 2 ≈ 1 3 ( D 2 − D 1 )   (   ∣ D 2 − D 1 ∣ ⩽ ε   时 达 到 精 度 要 求 ) f'(a)-D_1\approx O(h^2),\,f'(a)-D_2\approx O(\frac{h}{2})^2\\\,\\ \Rightarrow \frac{f'(a)-D_2}{f'(a)-D_1} \approx \frac{1}{4}\\\,\\ \Rightarrow f'(a)-D_2 \approx \frac{1}{3}(D_2-D_1)\\\,\\ (\,|D_2-D_1|\leqslant \varepsilon\,时达到精度要求) f(a)D1O(h2),f(a)D2O(2h)2f(a)D1f(a)D241f(a)D231(D2D1)D2D1ε
事后误差估计法:
在实际计算过程中,f’(x)是不可知的,f’(a)也就是不可知的,故不可用f’(a)-G(a)来计算误差。这里采用计算结果来估计误差,如果误差的估算值小于等于要求,即|D1-D2|≤ε时,便认为已经达到了精度要求。
先采用起始h带入计算,然后对h二分,每次取半。当精度达到要求时停止计算。

外推:提升精度
f ′ ( a ) − D 2 ≈ 1 3 ( D 2 − D 1 )   ⇒ f ′ ( a ) ≈ 4 3 D 2 − 1 3 D 1 = G 1   G 1 ( h ) = 4 3 G ( h 2 ) − 1 3 G ( h )   精 度 : f ′ ( a ) − G 1 ( h ) ≈ ( h 4 ) f'(a)-D_2 \approx \frac{1}{3}(D_2-D_1)\\\,\\ \Rightarrow f'(a) \approx \frac{4}{3}D_2- \frac{1}{3} D_1 = G_1\\\,\\ G_1(h)=\frac{4}{3}G(\frac{h}{2})-\frac{1}{3}G(h)\\\,\\ 精度:f'(a)-G_1(h) \approx (h^4) f(a)D231(D2D1)f(a)34D231D1=G1G1(h)=34G(2h)31G(h)f(a)G1(h)(h4)
还可以进一步外推:
G 2 ( h ) = 16 15 G 1 ( h 2 ) − 1 15 G 1 ( h )   G n ( h ) = 4 n 4 n − 1 G n − 1 ( h 2 ) − 1 4 n − 1 G n − 1 ( h ) G_2(h)=\frac{16}{15}G_1(\frac{h}{2})-\frac{1}{15}G_1(h)\\\,\\ G_n(h)=\frac{4^n}{4^n-1}G_{n-1}(\frac{h}{2})-\frac{1}{4^n-1}G_{n-1}(h) G2(h)=1516G1(2h)151G1(h)Gn(h)=4n14nGn1(2h)4n11Gn1(h)

插值法

除了用几何意义近似,求微分也可以知函数表达式套公式→插值获得函数表达式。

已知f(x)函数表,构造f(x)的Lagrange插值多项式Ln(x)
f ( x ) ≈ L n ( x )   R n ( x ) = f ( n + 1 ) ( ξ x ) ( n + 1 ) ! ∏ i = 0 n ( x − x i ) f(x) \approx L_n(x)\\\,\\ R_n(x)=\frac{f^{(n+1)}(\xi_x )}{(n+1)!} \prod_{i=0}^n{(x-x_i)} f(x)Ln(x)Rn(x)=(n+1)!f(n+1)(ξx)i=0n(xxi)
得近似求导公式:
f ( k ) ( x ) ≈ L n ( k ) ( x ) f^{(k)}(x) \approx L_n^{(k)}(x) f(k)(x)Ln(k)(x)
当k=1时:
f ′ ( x ) ≈ L n ′ ( x )   误 差 项 : R ( x ) = d d x ( f ( n + 1 ) ( ξ x ) ( n + 1 ) ! ∏ i = 0 n ( x − x i ) ) f'(x)\approx L_n'(x)\\\,\\ 误差项:R(x)=\frac{d}{dx}(\frac{f^{(n+1)}(\xi_x )}{(n+1)!} \prod_{i=0}^n{(x-x_i)}) f(x)Ln(x)R(x)=dxd((n+1)!f(n+1)(ξx)i=0n(xxi))

当x=xj时:(xj为函数节点。积形式求导为各项依次求导乘余项求和,x=xj时含xj项全部为0,只余下对(x-xj)求导的那一项)

f ′ ( x j ) ≈ ∑ i = 0 n l i ′ ( x j ) f ( x i ) ,   j = 0 , 1 , . . . , n   误 差 项 : R ( x j ) = ∏ i = 0 i ≠ j n ( x j − x i ) f ( n + 1 ) ( ξ x ) ( n + 1 ) ! f'(x_j)\approx \sum _{i=0}^n{l'_i(x_j)f(x_i)},\,j=0,1,...,n\\\,\\ 误差项:R(x_j)=\prod_ {\begin{array}{c}i=0\\i\ne j\\\end{array}}^n {(x_j-x_i)}\frac{f^{(n+1)}(\xi_x )}{(n+1)!} f(xj)i=0nli(xj)f(xi),j=0,1,...,nR(xj)=i=0i=jn(xjxi)(n+1)!f(n+1)(ξx)

注意:无论是差商法还是插值法,都是只有函数节点值求函数的微分,其计算过程都是对函数节点值的线性组合

 

数值积分

机械求积公式

I = ∫ a b f ( x ) d x 估 算 : I ≈ I n = ∑ i = 0 n A i f ( x i ) 误 差 / 余 项 : R n ( x ) = I − ∑ i = 0 n A i f ( x i ) I=\int _a^bf(x)dx\\ 估算:I\approx I_n=\sum _{i=0}^nA_if(x_i)\\ 误差/余项:R_n(x)=I-\sum_{i=0}^nA_if(x_i) I=abf(x)dxIIn=i=0nAif(xi)/Rn(x)=Ii=0nAif(xi)

  1. 没有f(x)的具体表达式求f(x)的积分,就是求已知函数节点值的线性组合
  2. 求积系数Ak的选取仅与节点xi的选取有关,与f(x)无关:机械。

只学过给函数具体形式的积分
→把函数表变成函数表达式
→插值

插值型数值积分

在[a,b]上去n+1点做n次插值多项式:
L n ( x ) = ∑ k = 0 n f ( x k ) l k ( x )   ∫ a b f ( x ) d x ≈ ∑ k = 0 n f ( x k ) ∫ a b l k ( x ) d x ≜ ∑ k = 0 n f ( x k ) A k   A k = ∫ a b l k ( x ) d x = ∫ a b ∏ j ≠ k x − x j x k − x j d x L_n(x) = \sum_{k=0}^nf(x_k)l_k(x)\\\,\\ \int _a^bf(x)dx \approx \sum_{k=0}^nf(x_k)\int _a^bl_k(x)dx\triangleq\sum_{k=0}^nf(x_k)A_k\\\,\\ A_k = \int _a^bl_k(x)dx =\int _a^b \prod _{j \neq k}\frac{x-x_j}{x_k-x_j}dx Ln(x)=k=0nf(xk)lk(x)abf(x)dxk=0nf(xk)ablk(x)dxk=0nf(xk)AkAk=ablk(x)dx=abj=kxkxjxxjdx

代数精度⭐

对于插值型数值积分:Ak使插值结果精确成立的条件是什么?精确与否如何衡量?误差如何衡量?

衡量误差:
∣ I − D ∣ ⩽ ε |I-D|\leqslant \varepsilon IDε
但实际上无法得知精确值,也没有近似,所以选择换一种衡量尺度:阶数。

定义:

若某求积公式的误差 R [ f ] R[f] R[f]满足: R [ x k ] = 0 R[x^k]=0 R[xk]=0对任意 k ⩽ n k\leqslant n kn阶多项式成立,且 R [ x n + 1 ] ≠ 0 R[x^{n+1}]\neq 0 R[xn+1]=0对某个n+1阶多项式成立,则称其代数精度为n。

求代数精度:
依次带入 f = 1 , x , x 2 , x 3 , ⋯   , x n , ⋯ f=1,x,x^2,x^3,\cdots,x^n,\cdots f=1,x,x2,x3,,xn,,最后一个使 I ≈ I n = ∑ i = 0 n A i f ( x i ) I\approx I_n=\sum _{i=0}^nA_if(x_i) IIn=i=0nAif(xi)精确成立的幂次即为代数精度。精确成立即要求带入 f f f后左右两边形式完全相等。

代数精度高意味着 I = I n I=I_n I=In更大的成立范围。代数精度n时对n阶及以下的多项式时精确的。n越大,可精确求得的范围越大。
形 如 ∑ k = 0 n A k f ( x k ) 的 求 积 公 式 至 少 有 n 次 代 数 精 度 ⇔ A k = ∫ a b l k ( x ) d x 形如\sum_{k=0}^nA_kf(x_k)的求积公式至少有n次代数精度\Leftrightarrow A_k=\int_a^bl_k(x)dx k=0nAkf(xk)nAk=ablk(x)dx

节点等距分布

当节点等距分布时插值结果代数精度可能大于n。
x i = a + i h ,   h = b − a n ,   i = 0 , 1 , . . . , n   A i = ∫ x 0 x n ∏ j ≠ i x − x i x i − x j d x , 令 x = a + t h   A i = ∫ 0 n ∏ j ≠ i ( t − j ) h ( i − j ) h h d t = ( b − a ) ( − 1 ) n − i n i ! ( n − i ) ! ∫ 0 n ∏ i ≠ j ( t − j ) d t = ( b − a ) C i ( n )   其 中 C i ( n ) = ( − 1 ) n − i n i ! ( n − i ) ! ∫ 0 n ∏ i ≠ j ( t − j ) 为 C o t e s 系 数 , 可 直 接 查 表   故 等 距 分 布 时 : ∫ a b f ( x ) d x ≈ ( b − a ) ∑ n = 0 N B n f ( a + n h ) x_i=a+ih,\,h=\frac{b-a}{n},\,i=0,1,...,n\\\,\\ A_i= \int_{x_0}^{x_n} \prod _{j \neq i}\frac{x-x_i}{x_i-x_j}dx,令x=a+th\\\,\\ A_i=\int_0^n \prod _{j \neq i}\frac{(t-j)h}{(i-j)h}hdt =(b-a)\frac{(-1)^{n-i}}{ni!(n-i)!}\int _0^n \prod_{i \neq j}(t-j)dt =(b-a)C_i^{(n)}\\\,\\ 其中C_i^{(n)}=\frac{(-1)^{n-i}}{ni!(n-i)!}\int _0^n \prod_{i \neq j}(t-j)为Cotes系数,可直接查表\\\,\\ 故等距分布时:\int_a^bf(x)dx \approx (b-a)\sum_{n=0}^NB_nf(a+nh) xi=a+ih,h=nba,i=0,1,...,nAi=x0xnj=ixixjxxidx,x=a+thAi=0nj=i(ij)h(tj)hhdt=(ba)ni!(ni)!(1)ni0ni=j(tj)dt=(ba)Ci(n)Ci(n)=ni!(ni)!(1)ni0ni=j(tj)Cotesabf(x)dx(ba)n=0NBnf(a+nh)
n为奇数时代数精度为n,n为偶数时代数精度为n+1。

与龙格现象类似,这个方法在n≤6时近似相等,在n≥7时误差较大。

复合求积

高次插值有Runge现象:分段低次插值。

复合求积基础方法

复合梯形公式:每次选择两个点来插值计算,即计算梯形的面积。
∫ a b f ( x ) d x ≈ b − a 2 [ f ( a ) + f ( b ) ]   ∫ a b f ( x ) d x ≈ h 2 [ f ( a ) + 2 ∑ n = 1 N − 1 f ( x n ) + f ( b ) ] \int _a^b f(x)dx\approx \frac{b-a}{2}[f(a)+f(b)]\\\,\\ \int _a^b f(x)dx\approx \frac{h}{2}\left[f(a)+2\sum _{n=1}^{N-1}f(x_n) +f(b)\right] abf(x)dx2ba[f(a)+f(b)]abf(x)dx2h[f(a)+2n=1N1f(xn)+f(b)]
复化Simpson公式:每次选择三个点来插值计算,即曲边梯形曲边为抛物线。
∫ a b f ( x ) d x ≈ b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ]   ∫ a b f ( x ) d x ≈ h 6 [ f ( a ) + 4 ∑ n = 0 N − 1 f ( x x + 1 2 ) + 2 ∑ n = 1 N − 1 f ( x n ) + f ( b ) ] \int _a^b f(x)dx\approx \frac{b-a}{6}\left[f(a)+4f(\frac{a+b}{2})+f(b)\right]\\\,\\ \int _a^b f(x)dx\approx \frac{h}{6}\left[f(a)+4\sum _{n=0}^{N-1}f(x_{x+\frac{1}{2}}) + 2\sum _{n=1}^{N-1} f(x_n) +f(b)\right] abf(x)dx6ba[f(a)+4f(2a+b)+f(b)]abf(x)dx6h[f(a)+4n=0N1f(xx+21)+2n=1N1f(xn)+f(b)]
为方便编程,记 x ~ 2 n = x n ,    x ~ 2 n − 1 = x x − 1 2 ,    n = 1 , 2 , . . . , N \tilde x_{2n}=x_n,\,\,\tilde x_{2n-1}=x_{x-\frac{1}{2}},\,\,n=1,2,...,N x~2n=xn,x~2n1=xx21,n=1,2,...,N
∫ a b f ( x ) d x ≈ h ~ 3 { f ( a ) − f ( b ) + 2 ∑ n = 1 N [ 2 f ( x ~ 2 n − 1 ) + f ( x ~ 2 n ) ] }   其 中 h ~ = b − a 2 N ,   x ~ n = a + n h ~ ,   n = 1 , 2 , . . . , 2 N \int _a^b f(x)dx\approx \frac{\tilde h}{3}\left\{f(a)-f(b)+2\sum _{n=1}^N [2f(\tilde x_{2n-1})+f(\tilde x_{2n})]\right\}\\\,\\ 其中\tilde h=\frac{b-a}{2N},\,\tilde x_n=a+n\tilde h,\,n=1,2,...,2N abf(x)dx3h~{f(a)f(b)+2n=1N[2f(x~2n1)+f(x~2n)]}h~=2Nba,x~n=a+nh~,n=1,2,...,2N

收敛速度与误差估计

与代数精度类似,选择阶数来衡量。此处衡量的是误差,类似高阶无穷小的形式。
p 阶 收 敛 ⇔ lim ⁡ h → 0 R [ f ] h p = C < ∞ p阶收敛\Leftrightarrow \underset{h\rightarrow 0}{\lim}\frac{R[f]}{h^p}=C<\infty ph0limhpR[f]=C<
收敛阶数越高,同计算量下精度更高。

给定精度需求,如何取n(采样点数)?
n*h=区间长度,所以也就是确定步长h的问题。
若h太大,则结果不精确不容易满足精度要求。若h太小,则计算量太大。
如何既满足精度要求又使得计算量可以接受?
类似变步长算法:从二分开始不断对分最终使得结果满足精度需求:Romberg积分。

龙贝格积分

  1. 确定基础步长
  2. 二分直至满足精度要求

问题:

  • 如何得知达到了精度要求?(精确值I未知)
  • 计算量能否优化?
误差的事后估计法

类似微分中的事后估计法。
I − T n = O ( h 2 ) ,    I − T 2 n = O ( h 2 ) 2   ∴ I − T 2 n I − T n = O ( h 2 ) 2 O ( h 2 ) ≈ 1 4   ∴ I − T 2 n ≈ 1 3 ( T 2 n − T n )   若 ∣ T 2 n − T n ∣ < ε , 则 ∣ I − T 2 n ∣ < ε I-T_n=O(h^2),\,\, I-T_{2n}=O(\frac{h}{2})^2\\\,\\ \therefore \frac{I-T_{2n}}{I-T_n}=\frac{O(\frac{h}{2})^2}{O(h^2)} \approx \frac{1}{4}\\\,\\ \therefore I-T_{2n} \approx \frac{1}{3}(T_{2n}-T_n)\\\,\\ 若|T_{2n}-T_n|<\varepsilon, 则|I-T_{2n} |<\varepsilon ITn=O(h2),IT2n=O(2h)2ITnIT2n=O(h2)O(2h)241IT2n31(T2nTn)T2nTn<ε,IT2n<ε

简化计算:递推

感觉记着就完了:
梯形公式:
T 2 n = 1 2 T n + h 2 ∑ k = 0 n − 1 f ( x k + 1 2 ) ,   其 中 h = b − a 2 k − 1 T_{2n}=\frac{1}{2}T_n+\frac{h}{2}\sum _{k=0} ^{n-1} f(x_{k+\frac{1}{2}}),\,其中h=\frac{b-a}{2^{k-1}} T2n=21Tn+2hk=0n1f(xk+21),h=2k1ba
注意公式中的h为上一步的步长,即折半前的步长。
每次步长折半即进行一次修正。修正值为 已知值取半加上新采样点的h/2倍。

外推:
I − T 2 n ≈ 1 3 ( T 2 n − T n )   ∴ I ≈ 4 3 T 2 n − 1 3 T n = S n I-T_{2n} \approx \frac{1}{3}(T_{2n}-T_n)\\\,\\ \therefore I \approx \frac{4}{3}T_{2n}-\frac{1}{3}T_n = S_n IT2n31(T2nTn)I34T2n31Tn=Sn
即复化Simpson公式。
未增加计算量提高了计算精度。
注意虽然外推得的公式是I的近似值,但与Simpson公式是精确相等的,二者都为I的近似公式。

余下外推类似:
∴ I − T 2 n I − T n = O ( h 2 ) 4 O ( h 4 ) ≈ 1 16   ∴ I − T 2 n ≈ 1 15 ( T 2 n − T n )   ∴ I ≈ 16 15 T 2 n − 1 15 T n = C n \therefore \frac{I-T_{2n}}{I-T_n}=\frac{O(\frac{h}{2})^4}{O(h^4)} \approx \frac{1}{16}\\\,\\ \therefore I-T_{2n} \approx \frac{1}{15}(T_{2n}-T_n)\\\,\\ \therefore I \approx \frac{16}{15}T_{2n}-\frac{1}{15}T_n = C_n ITnIT2n=O(h4)O(2h)4161IT2n151(T2nTn)I1516T2n151Tn=Cn
即复化Cotes公式。

用类似方法可以不断外推提高精度。

整合:

⭐Romberg积分的步骤⭐

先增加分点,然后外推提高精度。
计算步骤:

  1. T 1 = ( b − a ) 2 [ f ( b ) + f ( a ) ] T_1=\frac{(b-a)}{2}[f(b)+f(a)] T1=2(ba)[f(b)+f(a)]

  2. T 2 = T 1 2 + b − a 2 f ( a + b 2 ) T_2=\frac{T_1}{2}+\frac{b-a}{2}f(\frac{a+b}{2}) T2=2T1+2baf(2a+b)

  3. S 1 = 4 T 2 − T 1 4 − 1 S_1=\frac{4T_2-T_1}{4-1} S1=414T2T1

  4. T 4 = T 2 2 + b − a 2 2 ∑ k = 0 1 f ( a + b − a 2 2 + b − a 2 k ) T_4=\frac{T_2}{2}+\frac{\frac{b-a}{2}}{2}\sum _{k=0}^1 f(a+\frac{\frac{b-a}{2}}{2}+\frac{b-a}{2}k) T4=2T2+22bak=01f(a+22ba+2bak)

  5. S 2 = 4 T 4 − T 2 4 − 1 S_2=\frac{4T_4-T_2}{4-1} S2=414T4T2

  6. C 1 = 4 2 S 2 − S 1 4 2 − 1 C_1=\frac{4^2S_2-S_1}{4^2-1} C1=42142S2S1

  7. T 8 = T 4 2 + b − a 2 2 2 ∑ k = 0 3 f ( a + b − a 2 2 2 + b − a 2 2 k ) T_8=\frac{T_4}{2}+\frac{\frac{\frac{b-a}{2}}{2}}{2}\sum _{k=0}^3 f(a+\frac{\frac{\frac{b-a}{2}}{2}}{2}+\frac{\frac{b-a}{2}}{2}k) T8=2T4+222bak=03f(a+222ba+22bak)

  8. S 4 = 4 T 8 − T 4 4 − 1 S_4=\frac{4T_8-T_4}{4-1} S4=414T8T4

  9. C 2 = 4 2 S 4 − S 2 4 2 − 1 C_2=\frac{4^2S_4-S_2}{4^2-1} C2=42142S4S2

  10. R 1 = 4 3 S 2 − C 1 4 3 − 1 R_1=\frac{4^3S_2-C_1}{4^3-1} R1=43143S2C1

  11. . . . . . . . ....... .......

Romberg积分的步骤

判断精度:
∣ Y 1 − X 1 ∣ < ε |Y_1-X_1|<\varepsilon Y1X1<ε

1、3、6、10中有满足精度要求的即可停止计算。
每外推一次收敛阶提高2阶。

书上的写法:
{ T 0 ( k ) = 1 2 T 0 ( k − 1 ) + b − a 2 k ∑ n = 1 2 k − 1 f [ a + 2 n − 1 2 k ( b − a ) ] ,   k = 1 , 2 , . . .   T m ( l ) = 4 m T m − 1 ( l + 1 ) − T m − 1 ( l ) 4 m − 1 ,   l = 0 , 1 , . . . ,    m = 1 , 2 , . . .   终 止 准 则 : ∣ T m ( 0 ) − T m − 1 ( 0 ) ∣ < ε ,   取 积 分 逼 近 值 为   T m ( 0 ) \left\{ \begin{array}{rcl} T_0^{(k)}=\frac{1}{2}T_0^{(k-1)}+\frac{b-a}{2^k}\sum _{n=1}^{2^{k-1}}f\left [a+\frac{2n-1}{2^k}(b-a)\right],\,k=1,2,...&\\\,\\ T_m^{(l)}=\frac{4^mT_{m-1}^{(l+1)}-T_{m-1}^{(l)}}{4^m-1}, \,l=0,1,...,\,\,m=1,2,...& \end{array} \right.\\\,\\ 终止准则:|T_m^{(0)}-T_{m-1}^{(0)}|<\varepsilon,\,取积分逼近值为\,T_m^{(0)} T0(k)=21T0(k1)+2kban=12k1f[a+2k2n1(ba)],k=1,2,...Tm(l)=4m14mTm1(l+1)Tm1(l),l=0,1,...,m=1,2,...Tm(0)Tm1(0)<εTm(0)

应试

Romberg积分的步骤
顺序就是算法,顺序不对就是错误。

 

代数精度(选择题)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值