附近商铺
GEO数据结构
GEO就是Geolocation的简写形式,代表地理坐标。Redis在3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。常见的命令有:
GEOADD:添加一个地理空间信息,包含:经度(longitude)、纬度(latitude)、值(member)
GEODIST:计算指定的两个点之间的距离并返回
GEOHASH:将指定member的坐标转为hash字符串形式并返回
GEOPOS:返回指定member的坐标
GEORADIUS:指定圆心、半径,找到该圆内包含的所有member,并按照与圆心之间的距离排序后返回。6.2以后已废弃
GEOSEARCH:在指定范围内搜索member,并按照与指定点之间的距离排序后返回。范围可以是圆形或矩形。6.2.新功能
GEOSEARCHSTORE:与GEOSEARCH功能一致,不过可以把结果存储到一个指定的key。 6.2.新功能
附近商铺搜索
在首页中点击某个频道,即可看到频道下的商户:
导入商铺的id信息以及地理信息
@Test
void loadShopData(){
//1.查询店铺信息
List<Shop> list = shopService.list();
//2.把店铺分组,按照typeid,一致的放到一个集合
Map<Long,List<Shop>> map = list.stream().collect(Collectors.groupingBy(Shop::getTypeId));
//3.分批完成存储写入redis
for (Map.Entry<Long, List<Shop>> entry : map.entrySet()) {
//3.1获取类型id
Long typeId = entry.getKey();
String key = SHOP_GEO_KEY + typeId;
//3.2获取同类型的店铺集合
List<Shop> value = entry.getValue();
List<RedisGeoCommands.GeoLocation<String>> locations = new ArrayList<>(value.size());
//3.写入redis
for (Shop shop : value) {
//stringRedisTemplate.opsForGeo().add(key,new Point(shop.getX(),shop.getY()), shop.getId().toString());
locations.add(new RedisGeoCommands
.GeoLocation<>(shop.getId()
.toString(), new Point(shop.getX(),shop.getY())));
}
stringRedisTemplate.opsForGeo().add(key,locations);
}
}
实现根据距离查店铺、分页展示
@Override
public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
//1.判断是否需要根据坐标查询
if (x == null || y == null){
//不需要坐标查询,按数据库查询
Page<Shop> page = query()
.eq("type_id", typeId)
.page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));
//返回数据
return Result.ok(page.getRecords());
}
//2.计算分页参数
int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
int end = current * SystemConstants.DEFAULT_PAGE_SIZE;
//3.查询reis,按照距离排序、分页。结果:shopid、distance
String key = SHOP_GEO_KEY + typeId;
GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo()
.search(
key,
GeoReference.fromCoordinate(x, y),
new Distance(5000),
RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end));
//4.解析id
if (results == null){
return Result.ok(Collections.emptyList());
}
List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
if (list.size() <= from) {
//没有下一条了
return Result.ok(Collections.emptyList());
}
//4.1截取from - end 部分
List<Long> ids = new ArrayList<>(list.size());
Map<String , Distance> distanceMap = new HashMap<>(list.size());
list.stream().skip(from).forEach(result ->{
//4.2获取店铺ID
String shopIdStr = result.getContent().getName();
ids.add(Long.valueOf(shopIdStr));
//4.3获取店铺距离
Distance distance = result.getDistance();
distanceMap.put(shopIdStr,distance);
});
//5.根据id查询shop
String idStr = StrUtil.join(",", ids);
List<Shop> shops = query()
.in("id", ids)
.last("ORDER BY FIELD(id," + idStr + ")")
.list();
for (Shop shop : shops) {
shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());
}
//6.返回
return Result.ok(shops);
}
用户签到
我们按月来统计用户签到信息,签到记录为1,未签到则记录为0
把每一个bit位对应当月的每一天,形成了映射关系。用0和1标示业务状态,这种思路就称为位图(BitMap)
Redis中是利用string类型数据结构实现BitMap,因此最大上限是512M,转换为bit则是 2^32个bit位。
BitMap的操作命令有:
SETBIT:向指定位置(offset)存入一个0或1
GETBIT :获取指定位置(offset)的bit值
BITCOUNT :统计BitMap中值为1的bit位的数量
BITFIELD :操作(查询、修改、自增)BitMap中bit数组中的指定位置(offset)的值
BITFIELD_RO :获取BitMap中bit数组,并以十进制形式返回
BITOP :将多个BitMap的结果做位运算(与 、或、异或)
BITPOS :查找bit数组中指定范围内第一个0或1出现的位置
需求:实现签到接口,将当前用户当天签到信息保存到Redis中
public Result sign() {
//1.获取当前登录用户
Long userId = UserHolder.getUser().getId();
//2.获取日期
LocalDateTime now = LocalDateTime.now();
//3.拼接key
String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
String key = USER_SIGN_KEY + userId + keySuffix;
//4.获取今天是本月的第几天
int dayOfMonth = now.getDayOfMonth();
//5.写入redis
stringRedisTemplate.opsForValue().setBit(key,dayOfMonth-1,true);
return Result.ok();
}
签到统计
问题1:什么叫做连续签到天数?
从最后一次签到开始向前统计,直到遇到第一次未签到为止,计算总的签到次数,就是连续签到天数。
问题2:如何得到本月到今天为止的所有签到数据?
BITFIELD key GET u[dayOfMonth] 0
问题3:如何从后向前遍历每个bit位?
与 1 做与运算,就能得到最后一个bit位。
随后右移1位,下一个bit位就成为了最后一个bit位。
需求:实现下面接口,统计当前用户截止当前时间在本月的连续签到天数
public Result signCount() {
//1.获取当前登录用户
Long userId = UserHolder.getUser().getId();
//2.获取日期
LocalDateTime now = LocalDateTime.now();
//3.拼接key
String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
String key = USER_SIGN_KEY + userId + keySuffix;
//4.获取今天是本月的第几天
int dayOfMonth = now.getDayOfMonth();
//5.获取本月截止今天为止所有的签到记录
List<Long> results = stringRedisTemplate.opsForValue().bitField(
key, BitFieldSubCommands.create()
.get(BitFieldSubCommands.BitFieldType.unsigned(dayOfMonth)).valueAt(0)
);
if (results == null || results.isEmpty()){
//没有任何签到结果
return Result.ok(0);
}
Long num = results.get(0);
if (num == null || num == 0){
//没有任何签到结果
return Result.ok(0);
}
//6.循环遍历
int count = 0;
while (true){
//7.1让这个数字与1做与运算,得到数字的最后一个bit位,判断这个bit是否为0
if ((num & 1) == 0){
//7.2如果为0,说明未签到,循环结束
break;
}else {
//7.3如果不为零,说明已签到,计数器+1
count++;
}
//7.4把数字右移一位,把最后一个bit抛弃,继续统计下一个Bit
num >>>= 1;
}
return Result.ok(count);
}
UV统计
首先搞懂两个概念:
- UV:全称Unique Visitor,也叫独立访客量,是指通过互联网访问、浏览这个网页的自然人。1天内同一个用户多次访问该网站,只记录1次。
- PV:全称Page View,也叫页面访问量或点击量,用户每访问网站的一个页面,记录1次PV,用户多次打开页面,则记录多次PV。往往用来衡量网站的流量。
UV统计在服务端做会比较麻烦,因为要判断该用户是否已经统计过了,需要将统计过的用户信息保存。但是如果每个访问的用户都保存到Redis中,数据量会非常恐怖。
HyperLogLog用法
Hyperloglog(HLL)是从Loglog算法派生的概率算法,用于确定非常大的集合的基数,而不需要存储其所有值。相关算法原理大家可以参考:https://juejin.cn/post/6844903785744056333#heading-0
Redis中的HLL是基于string结构实现的,单个HLL的内存永远小于16kb,内存占用低的令人发指!作为代价,其测量结果是概率性的,有小于0.81%的误差。不过对于UV统计来说,这完全可以忽略。