Redis实战案例及问题分析之-附近商铺(GEO数据结构)-用户签到(BitMap)-UV统计(HyperLogLog)

附近商铺

GEO数据结构

GEO就是Geolocation的简写形式,代表地理坐标。Redis3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。常见的命令有:

GEOADD:添加一个地理空间信息,包含:经度(longitude)、纬度(latitude)、值(member

GEODIST:计算指定的两个点之间的距离并返回

GEOHASH:将指定member的坐标转为hash字符串形式并返回

GEOPOS:返回指定member的坐标

GEORADIUS:指定圆心、半径,找到该圆内包含的所有member,并按照与圆心之间的距离排序后返回。6.2以后已废弃

GEOSEARCH:在指定范围内搜索member,并按照与指定点之间的距离排序后返回。范围可以是圆形或矩形。6.2.新功能

GEOSEARCHSTORE:与GEOSEARCH功能一致,不过可以把结果存储到一个指定的key 6.2.新功能

附近商铺搜索

在首页中点击某个频道,即可看到频道下的商户:

 导入商铺的id信息以及地理信息

    @Test
    void loadShopData(){
        //1.查询店铺信息
        List<Shop> list = shopService.list();
        //2.把店铺分组,按照typeid,一致的放到一个集合
        Map<Long,List<Shop>> map = list.stream().collect(Collectors.groupingBy(Shop::getTypeId));
        //3.分批完成存储写入redis
        for (Map.Entry<Long, List<Shop>> entry : map.entrySet()) {
            //3.1获取类型id
            Long typeId = entry.getKey();
            String key = SHOP_GEO_KEY + typeId;
            //3.2获取同类型的店铺集合
            List<Shop> value = entry.getValue();
            List<RedisGeoCommands.GeoLocation<String>> locations = new ArrayList<>(value.size());
            //3.写入redis
            for (Shop shop : value) {
                //stringRedisTemplate.opsForGeo().add(key,new Point(shop.getX(),shop.getY()), shop.getId().toString());
                locations.add(new RedisGeoCommands
                        .GeoLocation<>(shop.getId()
                        .toString(), new Point(shop.getX(),shop.getY())));
            }
            stringRedisTemplate.opsForGeo().add(key,locations);
        }
    }

实现根据距离查店铺、分页展示

    @Override
    public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
        //1.判断是否需要根据坐标查询
        if (x == null || y == null){
            //不需要坐标查询,按数据库查询
            Page<Shop> page = query()
                    .eq("type_id", typeId)
                    .page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));
            //返回数据
            return Result.ok(page.getRecords());
        }
        //2.计算分页参数
        int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
        int end = current * SystemConstants.DEFAULT_PAGE_SIZE;
        //3.查询reis,按照距离排序、分页。结果:shopid、distance
        String key = SHOP_GEO_KEY + typeId;
        GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo()
                .search(
                        key,
                        GeoReference.fromCoordinate(x, y),
                        new Distance(5000),
                        RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end));
        //4.解析id
        if (results == null){
            return  Result.ok(Collections.emptyList());
        }
        List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
        if (list.size() <= from) {
            //没有下一条了
            return  Result.ok(Collections.emptyList());
        }
        //4.1截取from - end 部分
        List<Long> ids = new ArrayList<>(list.size());
        Map<String , Distance> distanceMap = new HashMap<>(list.size());
        list.stream().skip(from).forEach(result ->{
            //4.2获取店铺ID
            String shopIdStr = result.getContent().getName();
            ids.add(Long.valueOf(shopIdStr));
            //4.3获取店铺距离
            Distance distance = result.getDistance();
            distanceMap.put(shopIdStr,distance);
        });
        //5.根据id查询shop
        String idStr = StrUtil.join(",", ids);
        List<Shop> shops = query()
                .in("id", ids)
                .last("ORDER BY FIELD(id," + idStr + ")")
                .list();
        for (Shop shop : shops) {
            shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());
        }
        //6.返回
        return Result.ok(shops);
    }

用户签到

我们按月来统计用户签到信息,签到记录为1,未签到则记录为0

把每一个bit位对应当月的每一天,形成了映射关系。用01标示业务状态,这种思路就称为位图(BitMap

Redis是利用string类型数据结构实现BitMap因此最大上限是512M,转换为bit则是 2^32bit位。

BitMap的操作命令有:

SETBIT:向指定位置(offset)存入一个01

GETBIT :获取指定位置(offset)的bit

BITCOUNT :统计BitMap中值为1bit位的数量

BITFIELD :操作(查询、修改、自增)BitMapbit数组中的指定位置(offset)的值

BITFIELD_RO :获取BitMapbit数组,并以十进制形式返回

BITOP :将多个BitMap的结果做位运算(与 、或、异或)

BITPOS :查找bit数组中指定范围内第一个01出现的位置

需求:实现签到接口,将当前用户当天签到信息保存到Redis中

public Result sign() {
        //1.获取当前登录用户
        Long userId = UserHolder.getUser().getId();
        //2.获取日期
        LocalDateTime now = LocalDateTime.now();
        //3.拼接key
        String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
        String key = USER_SIGN_KEY + userId + keySuffix;
        //4.获取今天是本月的第几天
        int dayOfMonth = now.getDayOfMonth();
        //5.写入redis
        stringRedisTemplate.opsForValue().setBit(key,dayOfMonth-1,true);
        return Result.ok();
    }

 签到统计

问题1:什么叫做连续签到天数?

从最后一次签到开始向前统计,直到遇到第一次未签到为止,计算总的签到次数,就是连续签到天数。

问题2:如何得到本月到今天为止的所有签到数据?

  BITFIELD key GET u[dayOfMonth] 0

问题3:如何从后向前遍历每个bit位?

1 做与运算,就能得到最后一个bit位。

随后右移1位,下一个bit位就成为了最后一个bit位。

需求:实现下面接口,统计当前用户截止当前时间在本月的连续签到天数

 

    public Result signCount() {
        //1.获取当前登录用户
        Long userId = UserHolder.getUser().getId();
        //2.获取日期
        LocalDateTime now = LocalDateTime.now();
        //3.拼接key
        String keySuffix = now.format(DateTimeFormatter.ofPattern(":yyyyMM"));
        String key = USER_SIGN_KEY + userId + keySuffix;
        //4.获取今天是本月的第几天
        int dayOfMonth = now.getDayOfMonth();
        //5.获取本月截止今天为止所有的签到记录
        List<Long> results = stringRedisTemplate.opsForValue().bitField(
                key, BitFieldSubCommands.create()
                        .get(BitFieldSubCommands.BitFieldType.unsigned(dayOfMonth)).valueAt(0)
        );
        if (results == null || results.isEmpty()){
            //没有任何签到结果
            return Result.ok(0);
        }
        Long num = results.get(0);
        if (num == null || num == 0){
            //没有任何签到结果
            return Result.ok(0);
        }
        //6.循环遍历
        int count = 0;
        while (true){
        //7.1让这个数字与1做与运算,得到数字的最后一个bit位,判断这个bit是否为0
            if ((num & 1) == 0){
                //7.2如果为0,说明未签到,循环结束
                break;
            }else {
                //7.3如果不为零,说明已签到,计数器+1
                count++;
            }
        //7.4把数字右移一位,把最后一个bit抛弃,继续统计下一个Bit
            num >>>= 1;
        }
        return Result.ok(count);
    }

UV统计

首先搞懂两个概念:

  • UV全称Unique Visitor,也叫独立访客量,是指通过互联网访问、浏览这个网页的自然人。1天内同一个用户多次访问该网站,只记录1次。
  • PV全称Page View,也叫页面访问量或点击量,用户每访问网站的一个页面,记录1PV,用户多次打开页面,则记录多次PV。往往用来衡量网站的流量。

UV统计在服务端做会比较麻烦,因为要判断该用户是否已经统计过了,需要将统计过的用户信息保存。但是如果每个访问的用户都保存到Redis中,数据量会非常恐怖。

HyperLogLog用法

Hyperloglog(HLL)是从Loglog算法派生的概率算法,用于确定非常大的集合的基数,而不需要存储其所有值。相关算法原理大家可以参考:https://juejin.cn/post/6844903785744056333#heading-0

Redis中的HLL是基于string结构实现的,单个HLL的内存永远小于16kb,内存占用低的令人发指!作为代价,其测量结果是概率性的,有小于0.81%的误差。不过对于UV统计来说,这完全可以忽略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值