案例 53: 处理缺失值 知识点讲解 在数据分析中,处理缺失值是一个常见且重要的步骤。Pandas 提供了多种方法来处理 DataFrame 中的缺失值,包括填充缺失值和删除含有缺失值的行或列。 填充缺失值: 使用 fillna 方法可以将缺失值替换为指定的值。 删除缺失值: 使用 dropna 方法可以删除含有缺失值的行或列。 示例代码 # 准备数据和示例代码的运行结果,用于案例 53 # 示例数据 data_missing_values_handling = { 'A': [1