Pandas实战100例 | 案例 53: 处理缺失值

本文介绍了Pandas处理DataFrame中缺失值的方法,包括使用fillna()填充缺失值为0,以及用dropna()删除含有缺失值的行,强调了在数据分析中处理缺失值的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

案例 53: 处理缺失值

知识点讲解

在数据分析中,处理缺失值是一个常见且重要的步骤。Pandas 提供了多种方法来处理 DataFrame 中的缺失值,包括填充缺失值和删除含有缺失值的行或列。

  • 填充缺失值: 使用 fillna 方法可以将缺失值替换为指定的值。
  • 删除缺失值: 使用 dropna 方法可以删除含有缺失值的行或列。
示例代码
# 准备数据和示例代码的运行结果,用于案例 53

# 示例数据
data_missing_values_handling = {
   
    'A': [1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值