在PyTorch中,torch.from_numpy()
函数和.float()
方法被用来从NumPy数组创建张量,并可能改变张量的数据类型。两者之间的区别主要体现在数据类型的转换上:
-
torch.from_numpy(X_train)
:这行代码将NumPy数组X_train
转换为一个PyTorch张量,保留了原始NumPy数组的数据类型。
如果X_train
是一个64位浮点数组(即dtype=np.float64
),则转换后的PyTorch张量也将具有相同的数据类型torch.float64
。
同样,如果原始NumPy数组是整数类型(比如np.int32
),转换后的张量也会保持这个数据类型(比如torch.int32
)。 -
torch.from_numpy(X_train).float()
:这行代码首先将NumPy数组X_train
转换为一个PyTorch张量,然后通过.float()
方法将张量的数据类型转换为torch.float32
。
不